Analysis of bacterial surface interactions using microfluidic systems
- PMID: 22308903
- PMCID: PMC10365532
- DOI: 10.3184/003685011X13201828216868
Analysis of bacterial surface interactions using microfluidic systems
Abstract
Modern microbiological research has increasingly focused on the interactions between bacterial cells and the surfaces that they inhabit. To this end, microfluidic devices have played a large role in enabling research of cell-surface interactions, especially surface attachment and biofilm formation. This review provides background on microfluidic devices and their use in biological systems, as well specific examples from current literature. Methods to observe and interrogate cells within microfluidic devices are described, as well as the analytical techniques that are used to collect these data.
Similar articles
-
A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions.J Nanobiotechnology. 2020 Nov 11;18(1):166. doi: 10.1186/s12951-020-00724-0. J Nanobiotechnology. 2020. PMID: 33176791 Free PMC article.
-
High-throughput microfluidic method to study biofilm formation and host-pathogen interactions in pathogenic Escherichia coli.Appl Environ Microbiol. 2015 Apr;81(8):2827-40. doi: 10.1128/AEM.04208-14. Epub 2015 Feb 13. Appl Environ Microbiol. 2015. PMID: 25681176 Free PMC article.
-
Pseudomonas aeruginosa Initiates a Rapid and Specific Transcriptional Response during Surface Attachment.J Bacteriol. 2022 May 17;204(5):e0008622. doi: 10.1128/jb.00086-22. Epub 2022 Apr 25. J Bacteriol. 2022. PMID: 35467391 Free PMC article.
-
Microfluidic approaches to bacterial biofilm formation.Molecules. 2012 Aug 15;17(8):9818-34. doi: 10.3390/molecules17089818. Molecules. 2012. PMID: 22895027 Free PMC article. Review.
-
Microfluidic Studies of Biofilm Formation in Dynamic Environments.J Bacteriol. 2016 Sep 9;198(19):2589-95. doi: 10.1128/JB.00118-16. Print 2016 Oct 1. J Bacteriol. 2016. PMID: 27274032 Free PMC article. Review.
Cited by
-
Bacteria-surface interactions.Soft Matter. 2013 May 14;9(18):4368-4380. doi: 10.1039/C3SM27705D. Soft Matter. 2013. PMID: 23930134 Free PMC article.
-
Live Cell Analysis of Shear Stress on Pseudomonas aeruginosa Using an Automated Higher-Throughput Microfluidic System.J Vis Exp. 2019 Jan 16;(143):10.3791/58926. doi: 10.3791/58926. J Vis Exp. 2019. PMID: 30735194 Free PMC article.
-
Use of a high-throughput in vitro microfluidic system to develop oral multi-species biofilms.J Vis Exp. 2014 Dec 1;(94):52467. doi: 10.3791/52467. J Vis Exp. 2014. PMID: 25490193 Free PMC article.
-
Printed paper-based arrays as substrates for biofilm formation.AMB Express. 2014 Jun 6;4:32. doi: 10.1186/s13568-014-0032-0. eCollection 2014. AMB Express. 2014. PMID: 25006538 Free PMC article.
References
-
- Katsikogianni M.G., and Missirlis Y.F. (2009) Acta Biomater., 6(3), 1107–1118. - PubMed
-
- Whitehead K.A., Rogers D., Colligon J., Wright C., and Verran J. (2006) Colloids Surface B Biointerfaces, 51(1), 44–53. - PubMed
-
- Eginton P.J., Gibson H., Holah J., Handley P.S., and Gilbert P. (1995) Colloids Surface B: Biointerfaces, 5(3-4), 153–159.
-
- Thomas W.E., Trintchina E., Forero M., Vogel V., and Sokurenko E.V. (2002) Cell, 109(7), 913–923. - PubMed
-
- O'Toole G., Kaplan H.B., and Kolter R. (2000) Annu. Rev. Microbiol., 54(1), 49–79. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources