Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Aug;26(4):455-60.
doi: 10.1002/jnr.490260408.

Intracellular Na+ activity in cultured mouse oligodendrocytes

Affiliations

Intracellular Na+ activity in cultured mouse oligodendrocytes

K Ballanyi et al. J Neurosci Res. 1990 Aug.

Abstract

Na(+)-selective double-barrelled microelectrodes were used to measure the intracellular Na+ activity (aiNa) and membrane potential (Em) in oligodendrocytes from cultures of embryonic mouse spinal cord. In Na(+)-free solutions aiNa rapidly fell from its baseline of about 15 mM to values below 1 mM. Elevation of the K+ concentration in the bath ([K+]o) from 5.4 to 15 or 50 mM elicited an aiNa decrease of 4.7 or 9.0 mM, respectively. Ouabain blocked the aiNa decrease in response to 50 mM K+ by 37%. Bath application of 1 mM glutamate resulted in a membrane depolarization of 4.5 mV and a concomitant rise of aiNa by 8.6 mM. aiNa increased by approximately 11 mM after washout of a solution containing 20 mM NH4+. This aiNa increase was not blocked by amiloride, excluding a major contribution of a Na+/H+ antiporter. We conclude that, in cultured oligodendrocytes, transmembraneous Na+ movements are involved in pH regulation, glutamate causes an influx of Na+, and that the Na+/K+ pump and passive KCl uptake contribute to K+ accumulation.

PubMed Disclaimer

Publication types