Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979;28(2):129-35.

Effect of altitude hypoxia on ATPase activity in the brain of rats of different ages

  • PMID: 223183

Effect of altitude hypoxia on ATPase activity in the brain of rats of different ages

J Mourek et al. Physiol Bohemoslov. 1979.

Abstract

In experiments on 5-day-old and adult rats of both sexes, the authors investigated Na+--K+-stimulated and Mg2+-dependent ATPase activity in the cerebral cortex, subcortical formations and the medulla oblongata. They studied the effect of 20 min acute altitude hypoxia corresponding to either 7,000 or 9,000 m, in a thermostable chamber (30 degrees C). ATPase activity was found to increase during ontogenesis -- this being the greatest in cortical tissue and the least in the medulla oblongata. Hypoxia corresponding to 7,000 m altitude significantly depressed total ATPase activity in 5-day-old rats, but significantly stimulated it in adult animals. Changes in Na+--K+-stimulated ATPase activity played the major role in these changes. Hypoxia corresponding to 9,000 m altitude likewise depressed total ATPase activity in 5-day-old rats and to practically the same extent as moderate hypoxia (7,000 m). In adult rats, marked hypoxia (9,000 m) significantly reduced only Mg2+-dependent ATPase activity. Mg2+ activity rose during ontogenesis to a lesser degree than Na+--K+-stimulated ATPase and the reciprocal ratio of these ATPase and the reciprocal ratio of these ATPase activities, in the given parts of the brain, fell progressively in adult animals to values close to 1.

PubMed Disclaimer

Substances