Thr649Ala-AS160 knock-in mutation does not impair contraction/AICAR-induced glucose transport in mouse muscle
- PMID: 22318952
- PMCID: PMC3361978
- DOI: 10.1152/ajpendo.00379.2011
Thr649Ala-AS160 knock-in mutation does not impair contraction/AICAR-induced glucose transport in mouse muscle
Abstract
AS160 and its closely related protein TBC1D1 have emerged as key mediators for both insulin- and contraction-stimulated muscle glucose uptake through regulating GLUT4 trafficking. Insulin increases AS160 phosphorylation at multiple Akt/PKB consensus sites, including Thr(649), and promotes its binding to 14-3-3 proteins through phospho-Thr(649). We recently provided genetic evidence that AS160-Thr(649) phosphorylation/14-3-3 binding plays a key role in mediating insulin-stimulated glucose uptake in muscle. Contraction has also been proposed to increase phosphorylation of AS160 and TBC1D1 via AMPK, which could be detected by a generic phospho-Akt substrate (PAS) antibody. Here, analysis of AS160 immunoprecipitates from muscle extracts with site-specific phospho-antibodies revealed that contraction and AICAR caused no increase but rather a slight decrease in phosphorylation of the major PAS recognition site AS160-Thr(649). In line with this, contraction failed to enhance 14-3-3 binding to AS160. Consistent with previous reports, we also observed that in situ contraction stimulated the signal intensity of PAS antibody immunoreactive protein of ∼150-160 kDa in muscle extracts. Using a TBC1D1 deletion mutant mouse, we showed that TBC1D1 protein accounted for the majority of the PAS antibody immunoreactive signals of ∼150-160 kDa in extracts of contracted muscles. Consistent with the proposed role of AS160-Thr(649) phosphorylation/14-3-3 binding in mediating glucose uptake, AS160-Thr(649)Ala knock-in mice displayed normal glucose uptake upon contraction and AICAR in isolated muscles. We conclude that the previously reported PAS antibody immunoreactive band ∼150-160 kDa, which were increased upon contraction, does not represent AS160 but TBC1D1, and that AS160-Thr(649)Ala substitution impairs insulin- but neither contraction- nor AICAR-stimulated glucose uptake in mouse skeletal muscle.
Figures






References
-
- Bruss MD, Arias EB, Lienhard GE, Cartee GD. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes 54: 41–50, 2005 - PubMed
-
- Cartee GD, Wojtaszewski JF. Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl Physiol Nutr Metab 32: 557–566, 2007 - PubMed
-
- Chen S, Mackintosh C. Differential regulation of NHE1 phosphorylation and glucose uptake by inhibitors of the ERK pathway and p90RSK in 3T3–L1 adipocytes. Cell Signal 21: 1984–1993, 2009 - PubMed
-
- Chen S, Murphy J, Toth R, Campbell DG, Morrice NA, Mackintosh C. Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK activators. Biochem J 409: 449–459, 2008 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources