Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May:90:78-84.
doi: 10.1016/j.saa.2012.01.006. Epub 2012 Jan 9.

Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi

Affiliations

Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi

C Jayaseelan et al. Spectrochim Acta A Mol Biomol Spectrosc. 2012 May.

Abstract

In the present work, we describe a low-cost, unreported and simple procedure for biosynthesis of zinc oxide nanoparticles (ZnO NPs) using reproducible bacteria, Aeromonas hydrophila as eco-friendly reducing and capping agent. UV-vis spectroscopy, XRD, FTIR, AFM, NC-AFM and FESEM with EDX analyses were performed to ascertain the formation and characterization of ZnO NPs. The synthesized ZnO NPs were characterized by a peak at 374 nm in the UV-vis spectrum. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical, oval with an average size of 57.72 nm. Synthesized ZnO NPs showed the XRD peaks at 31.75°, 34.37°, 47.60°, 56.52°, 66.02° and 75.16° were identified as (100), (002), (101), (102), (110), (112) and (202) reflections, respectively. Rietveld analysis to the X-ray data indicated that ZnO NPs have hexagonal unit cell at crystalline level. The size and topological structure of the ZnO NPs was measured by NC-AFM. The morphological characterization of synthesized nanoparticles was analyzed by FESEM and chemical composition by EDX. The antibacterial and antifungal activity was ended with corresponding well diffusion and minimum inhibitory concentration. The maximum zone of inhibition was observed in the ZnO NPs (25 μg/mL) against Pseudomonas aeruginosa (22±1.8 mm) and Aspergillus flavus (19±1.0 mm). Bacteria-mediated ZnO NPs were synthesized and proved to be a good novel antimicrobial material for the first time in this study.

PubMed Disclaimer

MeSH terms

LinkOut - more resources