Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Oct;228(2):204-15.
doi: 10.1002/path.4000. Epub 2012 Apr 18.

MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma

Affiliations

MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma

Zhaojian Liu et al. J Pathol. 2012 Oct.

Abstract

Molecular pathogenesis of high-grade serous ovarian carcinoma (HG-SOC) is poorly understood. Recent recognition of HG-SOC precursor lesions, defined as serous tubal intraepithelial carcinoma (STIC) in fimbria, provides a new venue for the study of early genetic changes in HG-SOC. Using microRNA profiling analysis, we found that miR-182 expression was significantly higher in STIC than in matched normal Fallopian tube. Further study revealed that miR-182 was significantly overexpressed in most HG-SOC cases. To test whether miR-182 plays a major role in early tumourigenesis of HG-SOC, we overexpressed miR-182 in immortalized ovarian surface, Fallopian tube secretory cells and malignant ovarian cell lines, and found that miR-182 overexpression resulted in increased tumour transformation in vitro, and enhanced tumour invasiveness in vitro and metastasis in vivo. Mechanistically, we demonstrated that the oncogenic properties of miR-182 in ovarian cancer were mediated in part by its impaired repair of DNA double-strand breaks and negative regulation of breast cancer 1 (BRCA1) and metastasis suppressor 1 (MTSS1) expression as well as its positive regulation of the oncogene high-mobility group AT-hook 2 (HMGA2). Our findings suggest that miR-182 dysregulation confers powerful oncogenic potential in the tumourigenesis of HG-SOC. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources