Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 May;40(5):1313-20.
doi: 10.3892/ijo.2012.1364. Epub 2012 Feb 9.

Novel strategies in the treatment of castration-resistant prostate cancer (Review)

Affiliations
Review

Novel strategies in the treatment of castration-resistant prostate cancer (Review)

Ilaria Marech et al. Int J Oncol. 2012 May.

Abstract

Prostate cancer is the most common cancer in men in Europe and the United States, and the third leading cause of death from cancer in Europe. Survival of prostate cancer cells is dependent on the activation of androgen receptors (AR), that are overexpressed in this tumor. Furthermore, ~90% of prostate cancer patients that respond to first-line androgen deprivation therapy (ADT) undergo rapid progression. This condition is defined as castration-resistant prostate cancer (CRPC). Docetaxel-based regimens significantly improve overall survival (OS) in patients with CRPC and represent the only treatment strategy approved by the Food and Drug Administration (FDA). Recently, abiraterone (second hormonal therapy) and cabazitaxel (new taxane) have been shown to improve survival in patients with CRPC who progressed following docetaxel-based chemotherapy. Vaccine therapy has also been demonstrated to improve OS in patients with asymptomatic or minimally symptomatic metastatic CRPC. Additional therapeutic targets have been analyzed in prostate cancer, including apoptosis, angiogenic receptors, vitamin D and Src pathways. Several phase II studies are ongoing. The high frequency of prostate cancer-related metastatic bone disease has led to consider this pathway as a therapeutic target. To this end, several bone-targeted agents have been investigated, most notably zoledronic acid, which is highly effective at stabilizing the bone and preventing skeletal complications. More recently, a nuclear factor-β ligand (RANKL) inhibitor, denosumab, has been developed for the treatment of bone metastases.

PubMed Disclaimer

Publication types

MeSH terms