Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2012 Feb;27(2):486-93.
doi: 10.1093/ndt/gfr737.

Low hydrogen sulphide and chronic kidney disease: a dangerous liaison

Editorial

Low hydrogen sulphide and chronic kidney disease: a dangerous liaison

Alessandra F Perna et al. Nephrol Dial Transplant. 2012 Feb.

Abstract

Hydrogen sulphide, H(2)S, is a gaseous compound involved in a number of biological responses, e.g. blood pressure, vascular function and energy metabolism. In particular, H(2)S is able to lower blood pressure, protect from injury in models of ischaemia-reperfusion and induce a hypometabolic state. In chronic kidney disease (CKD), low plasma hydrogen sulphide levels have been established in humans and in animal models. The enzymes involved in its production are cystathionine β-synthase, cystathionine γ-lyase and 3-mercaptopyruvate sulphurtransferase. The mechanisms for H(2)S decrease in CKD are related to the reduced gene expression (demonstrated in uraemic patient blood cells) and decreased protein levels (in tissues such as liver, kidney, brain in a CKD rat model). In the present Nephrol Dial Transplant issue, in fact, Aminzadeh and Vaziri document that the alterations in this pathway complicate the uraemic state and are linked to CKD progression. They furnish a time frame in CKD and record enzyme tissue distribution. It remains to be established if low H(2)S is causally linked to CKD progression and if interventions aimed to restore the status quo ante are able to modify this picture.

PubMed Disclaimer

Comment on

MeSH terms