Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2012:114:93-5.
doi: 10.1007/978-3-7091-0956-4_16.

Stationarity in neuromonitoring data

Affiliations
Randomized Controlled Trial

Stationarity in neuromonitoring data

Hans E Heissler et al. Acta Neurochir Suppl. 2012.

Abstract

Purpose: Signals reflecting the metabolic and circulatory status of an injured central nervous system are normally corrupted systematically. The patient is part of a therapeutic control-loop and the signals acquired are rather determined by the quality of control (stationarity of signals) than by the underlying pathological process.

Methods: To verify the control-loop hypothesis, neuromonitoring data from 12 randomly selected severely head injured patients (initial GCS ≤ 8, 7 men, 5 women) were analysed for circulatory (blood pressure, intracranial pressure [ICP], cerebral perfusion pressure [CPP]) and metabolic (arterial blood gases, jugular bulb oxygenation [SjvO(2)], brain tissue oxygen partial pressure [ptiO(2)]) variables (n = 10). A total of 120 time series of generally not equidistant sample intervals were assessed for stationarity by Wallis & Moore's runs test.

Results: Non-stationarity could only be proven in 23 time series, i.e. the control-loop hypothesis was violated. Trends were mainly found in CPP (n = 5) and ICP (n = 4). The remaining cases spread out on all but one (temperature) signal. Nine patients showed at least one time series with a trend. One patient had clear trends in five out of ten variables that focused on SjvO(2), ptiO(2), ICP and CPP.

Conclusions: Absence of stationarity in about 20% of time series is credited to an effective therapeutic control-loop. For analytical purposes, however, the benefit seems to be overestimated. Consequently, neuromonitoring should be considered the analysis of short-term disturbances that are intentionally compensated for by a short response time. Information content is thus reduced even if the number of sensor devices increases.

PubMed Disclaimer

Publication types

LinkOut - more resources