Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar 20;28(11):5267-74.
doi: 10.1021/la204495z. Epub 2012 Mar 6.

Biosynthesis of platinum nanoparticles by Escherichia coli MC4100: can such nanoparticles exhibit intrinsic surface enantioselectivity?

Affiliations

Biosynthesis of platinum nanoparticles by Escherichia coli MC4100: can such nanoparticles exhibit intrinsic surface enantioselectivity?

Gary Attard et al. Langmuir. .

Abstract

The biomanufacture of two types of platinum bionanoparticle (bioNP) using Escherichia coli MC4100(1% and 20% by mass metal loading) together with a method for both liberating the nanoparticles (NPs) from the bacterial layer and their subsequent critical cleaning is reported. The possibility of an enantiomeric excess of chiral kink sites forming on the surface of the Pt nanoparticles produced by the bacteria was investigated using the electrooxidation of D- and L-glucose as the chiral probe. Transmission electron microscopy revealed that the Pt bioNPs (after recovery and cleaning) were typically 2.3 ± 0.7 nm (1% loading) and 4.5 ± 0.7 nm (20% loading) in diameter. The D- and L-glucose electrooxidation measurements did not give rise to any chiral response using either of the Pt bioNPs types but did display differing CV profiles. This suggested that the overall surface morphology of each bioNP could be controlled by the degree of metal loading but that no enantiomeric excess of intrinsically chiral surface kink sites was present.

PubMed Disclaimer

Publication types

LinkOut - more resources