Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug;44(8):1463-72.
doi: 10.1249/MSS.0b013e31824e0d5d.

TLR2 and TLR4 activate p38 MAPK and JNK during endurance exercise in skeletal muscle

Affiliations

TLR2 and TLR4 activate p38 MAPK and JNK during endurance exercise in skeletal muscle

Hermann Zbinden-Foncea et al. Med Sci Sports Exerc. 2012 Aug.

Abstract

Purpose: Toll-like receptors 2 and 4 (TLR2, TLR4) are found in the membrane of skeletal muscle cells. A variety of molecular components can activate TLR2 and TLR4, among others, long-chain fatty acids. The subsequent downstream signaling triggers the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways. Therefore, the purpose of this study was to test whether an elevation of extracellular nonesterified fatty acids (NEFA) observed during endurance exercise may activate the MAPK and NF-κB pathways via TLR2 and TLR4.

Methods: tlr2 and tlr4 mice and wild-type C57BL/6J animals (WT) were submitted to a standardized endurance exercise.

Results: Immediately after exercise, the phosphorylation state of p38 MAPK, c-Jun NH2-terminal kinase (JNK), and c-Jun was increased in the tibialis anterior (TA) and soleus (SOL) muscles of WT (P < 0.05). The phosphorylation state of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and IκB kinase α/β and the DNA-binding of NF-κB remained unchanged. The activation of p38 MAPK, JNK, and c-Jun was completely blunted in TA of tlr2 and tlr4 mice, whereas in SOL, it represented only 25% of the increase observed in WT mice. The causal relationship between NEFA concentration and MAPK activation was evaluated by injecting mice with heparin. A similar increase in plasma NEFA was observed after heparin injection than after endurance exercise. JNK and p38 MAPK were activated under heparin in TA and SOL of WT (P < 0.05) but not in muscles of tlr2 and tlr4 mice.

Conclusions: The present study supports the idea that during endurance exercise, TLR2 and TLR4 mediate a signal linking the elevated plasma NEFA concentration to the activation of p38 MAPK and JNK.

PubMed Disclaimer

Publication types