Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Aug;60(8):1258-68.
doi: 10.1002/glia.22312. Epub 2012 Feb 13.

Astrocyte immune responses in epilepsy

Affiliations
Review

Astrocyte immune responses in epilepsy

Eleonora Aronica et al. Glia. 2012 Aug.

Abstract

Astrocytes, the major glial cell type of the central nervous system (CNS), are known to play a major role in the regulation of the immune/inflammatory response in several human CNS diseases. In epilepsy-associated pathologies, the presence of astrogliosis has stimulated extensive research focused on the role of reactive astrocytes in the pathophysiological processes that underlie the development of epilepsy. In brain tissue from patients with epilepsy, astrocytes undergo significant changes in their physiological properties, including the activation of inflammatory pathways. Accumulating experimental evidence suggests that proinflammatory molecules can alter glio-neuronal communications contributing to the generation of seizures and seizure-related neuronal damage. In particular, both in vitro and in vivo data point to the role of astrocytes as both major source and target of epileptogenic inflammatory signaling. In this context, understanding the astroglial inflammatory response occurring in epileptic brain tissue may provide new strategies for targeting astrocyte-mediated epileptogenesis. This article reviews current evidence regarding the role of astrocytes in the regulation of the innate immune responses in epilepsy. Both clinical observations in drug-resistant human epilepsies and experimental findings in clinically relevant models will be discussed and elaborated, highlighting specific inflammatory pathways (such as interleukin-1β/toll-like receptor 4) that could be potential targets for antiepileptic, disease-modifying therapeutic strategies.

PubMed Disclaimer

Similar articles

Cited by

Publication types