Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;70(6):1004-14.
doi: 10.1111/j.1365-313X.2012.04941.x. Epub 2012 Mar 31.

The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway

Affiliations
Free article

The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway

Michele Fabris et al. Plant J. 2012 Jun.
Free article

Abstract

Diatoms are one of the most successful groups of unicellular eukaryotic algae. Successive endosymbiotic events contributed to their flexible metabolism, making them competitive in variable aquatic habitats. Although the recently sequenced genomes of the model diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana have provided the first insights into their metabolic organization, the current knowledge on diatom biochemistry remains fragmentary. By means of a genome-wide approach, we developed DiatomCyc, a detailed pathway/genome database of P. tricornutum. DiatomCyc contains 286 pathways with 1719 metabolic reactions and 1613 assigned enzymes, spanning both the central and parts of the secondary metabolism of P. tricornutum. Central metabolic pathways, such as those of carbohydrates, amino acids and fatty acids, were covered. Furthermore, our understanding of the carbohydrate model in P. tricornutum was extended. In particular we highlight the discovery of a functional Entner-Doudoroff pathway, an ancient alternative for the glycolytic Embden-Meyerhof-Parnas pathway, and a putative phosphoketolase pathway, both uncommon in eukaryotes. DiatomCyc is accessible online (http://www.diatomcyc.org), and offers a range of software tools for the visualization and analysis of metabolic networks and 'omics' data. We anticipate that DiatomCyc will be key to gaining further understanding of diatom metabolism and, ultimately, will feed metabolic engineering strategies for the industrial valorization of diatoms.

PubMed Disclaimer

Publication types

LinkOut - more resources