Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Nov-Dec;30(6):1318-35.
doi: 10.1016/j.biotechadv.2012.01.024. Epub 2012 Feb 3.

Detecting un-authorized genetically modified organisms (GMOs) and derived materials

Affiliations
Review

Detecting un-authorized genetically modified organisms (GMOs) and derived materials

Arne Holst-Jensen et al. Biotechnol Adv. 2012 Nov-Dec.

Abstract

Genetically modified plants, in the following referred to as genetically modified organisms or GMOs, have been commercially grown for almost two decades. In 2010 approximately 10% of the total global crop acreage was planted with GMOs (James, 2011). More than 30 countries have been growing commercial GMOs, and many more have performed field trials. Although the majority of commercial GMOs both in terms of acreage and specific events belong to the four species: soybean, maize, cotton and rapeseed, there are another 20+ species where GMOs are commercialized or in the pipeline for commercialization. The number of GMOs cultivated in field trials or for commercial production has constantly increased during this time period. So have the number of species, the number of countries involved, the diversity of novel (added) genetic elements and the global trade. All of these factors contribute to the increasing complexity of detecting and correctly identifying GMO derived material. Many jurisdictions, including the European Union (EU), legally distinguish between authorized (and therefore legal) and un-authorized (and therefore illegal) GMOs. Information about the developments, field trials, authorizations, cultivation, trade and observations made in the official GMO control laboratories in different countries around the world is often limited, despite several attempts such as the OECD BioTrack for voluntary dissemination of data. This lack of information inevitably makes it challenging to detect and identify GMOs, especially the un-authorized GMOs. The present paper reviews the state of the art technologies and approaches in light of coverage, practicability, sensitivity and limitations. Emphasis is put on exemplifying practical detection of un-authorized GMOs. Although this paper has a European (EU) bias when examples are given, the contents have global relevance.

PubMed Disclaimer

Publication types

MeSH terms