Next-generation genetic testing for retinitis pigmentosa
- PMID: 22334370
- PMCID: PMC3490376
- DOI: 10.1002/humu.22045
Next-generation genetic testing for retinitis pigmentosa
Erratum in
- Hum Mutat. 2013 Aug;34(8):1181
Abstract
Molecular diagnostics for patients with retinitis pigmentosa (RP) has been hampered by extreme genetic and clinical heterogeneity, with 52 causative genes known to date. Here, we developed a comprehensive next-generation sequencing (NGS) approach for the clinical molecular diagnostics of RP. All known inherited retinal disease genes (n = 111) were captured and simultaneously analyzed using NGS in 100 RP patients without a molecular diagnosis. A systematic data analysis pipeline was developed and validated to prioritize and predict the pathogenicity of all genetic variants identified in each patient, which enabled us to reduce the number of potential pathogenic variants from approximately 1,200 to zero to nine per patient. Subsequent segregation analysis and in silico predictions of pathogenicity resulted in a molecular diagnosis in 36 RP patients, comprising 27 recessive, six dominant, and three X-linked cases. Intriguingly, De novo mutations were present in at least three out of 28 isolated cases with causative mutations. This study demonstrates the enormous potential and clinical utility of NGS in molecular diagnosis of genetically heterogeneous diseases such as RP. De novo dominant mutations appear to play a significant role in patients with isolated RP, having major implications for genetic counselling.
© 2012 Wiley Periodicals, Inc.
Figures



References
-
- Ávila-Fernández A, Cantalapiedra D, Aller E, Vallespín E, Aguirre-Lambán J, Blanco-Kelly F, Corton M, Riveiro-Álvarez R, Allikmets R, Trujillo-Tiebas MJ, Millán JM, Cremers FPM, Ayuso C. Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray. Mol Vis. 2010;16:2550–2558. - PMC - PubMed
-
- Bainbridge JWB, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med. 2008;358:2231–2239. - PubMed
-
- Bandah-Rozenfeld D, Collin RWJ, Banin E, van den Born LI, Coene KLM, Siemiatkowska AM, Zelinger L, Khan MI, Lefeber DJ, Erdinest I, Testa F, Simonelli F, Voesenek K, Blokland EAW, Strom TM, Klaver CCW, Qamar R, Banfi S, Cremers FPM, Sharon D, den Hollander AI. Mutations in IMPG2, encoding interphotoreceptor matrix proteoglycan 2, cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet. 2010;87:199–208. - PMC - PubMed
-
- Bell J, Bodmer D, Sistermans E, Ramsden SC. Practice guidelines for the interpretation and reporting of unclassified variants (UVs) in clinical molecular genetics. Clin Mol Genet Soc. 2007
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases