Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar;13(5):237-8.
doi: 10.4161/cbt.19608. Epub 2012 Mar 1.

Dihydrotestosterone synthesis from adrenal precursors does not involve testosterone in castration-resistant prostate cancer

Affiliations

Dihydrotestosterone synthesis from adrenal precursors does not involve testosterone in castration-resistant prostate cancer

Tessa J Campbell et al. Cancer Biol Ther. 2012 Mar.

Abstract

Androgen deprivation therapy is the frontline treatment for metastatic prostate cancer; however, because the majority of cases of advanced prostate cancer progress to castration-resistant prostate cancer (CRPC), there is a considerable need to better understand the synthesis of intratumoral concentrations of the androgen receptor (AR) agonist, 5α-dihydrotestosterone (DHT) in CRPC. In a recent article in the Proceedings of the National Academy of Sciences, Chang et al. show that, contrary to widely held assumptions, the dominant pathway to DHT synthesis does not involve testosterone as a precursor to DHT, but instead involves the conversion of Δ ( 4) -androstenedione (AD) to 5α-dione (AD→5α-dione→DHT) by the steroid-5α-reductase isoenzyme 1 (SRD5A1). The authors show that it is this alternative pathway that drives the progression of CRPC, and they confirm these findings in six established human prostate cancer cell lines as well as in the metastatic tumors from two patients with CRPC. Such findings open the door to new areas of research and to the development of new therapeutic targets in CRPC.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Sharifi N, Gulley JL, Dahut WL. Androgen deprivation therapy for prostate cancer. JAMA. 2005;294:238–244. doi: 10.1001/jama.294.2.238. - DOI - PubMed
    1. Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res. 2005;11:4653–4657. doi: 10.1158/1078-0432.CCR-05-0525. - DOI - PubMed
    1. Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 2008;68:4447–4454. doi: 10.1158/0008-5472.CAN-08-0249. - DOI - PMC - PubMed
    1. Luu-The V, Bélanger A, Labrie F. Androgen biosynthetic pathways in the human prostate. Best Pract Res Clin Endocrinol Metab. 2008;22:207–221. doi: 10.1016/j.beem.2008.01.008. - DOI - PubMed
    1. Andersson S, Russell DW, Wilson JD. 17β-Hydroxysteroid dehydrogenase 3 deficiency. Trends Endocrinol Metab. 1996;7:121–126. doi: 10.1016/1043-2760(96)00034-3. - DOI - PubMed

MeSH terms