Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar 21;4(6):2066-71.
doi: 10.1039/c2nr11869f. Epub 2012 Feb 16.

Porous ZnO-ZnSe nanocomposites for visible light photocatalysis

Affiliations

Porous ZnO-ZnSe nanocomposites for visible light photocatalysis

Seungho Cho et al. Nanoscale. .

Abstract

We report the synthesis of porous ZnO-ZnSe nanocomposites for use in visible light photocatalysis. Porous ZnO nanostructures were synthesized by a microwave-assisted hydrothermal reaction then converted into porous ZnO-ZnSe nanocomposites by a microwave-assisted dissolution-recrystallization process using an aqueous solution containing selenium ions. ZnO and ZnSe nanocrystallites of the nanocomposites were well-mixed (rather than forming simple core-shell (ZnO-ZnSe) structures), particularly, in the outer regions. Both ZnO and ZnSe were present at the surface and exposed to the environment. The porous ZnO-ZnSe nanocomposites showed absorption bands in the visible region as well as in the UV region. The porous ZnO-ZnSe nanocomposites had much higher activities than the porous ZnO nanostructures. Control experiments using cutoff filters revealed that the main photocatalytic activity of the synthesized nanostructures arose from photo-excitation of the semiconductor (ZnO or ZnSe) via absorption of light of an energy equal to or exceeding the band gap energy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources