Impact of LDL apheresis on atheroprotective reverse cholesterol transport pathway in familial hypercholesterolemia
- PMID: 22338009
- PMCID: PMC3307653
- DOI: 10.1194/jlr.M024141
Impact of LDL apheresis on atheroprotective reverse cholesterol transport pathway in familial hypercholesterolemia
Abstract
In familial hypercholesterolemia (FH), low HDL cholesterol (HDL-C) levels are associated with functional alterations of HDL particles that reduce their capacity to mediate the reverse cholesterol transport (RCT) pathway. The objective of this study was to evaluate the consequences of LDL apheresis on the efficacy of the RCT pathway in FH patients. LDL apheresis markedly reduced abnormal accelerated cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester (CE) transfer from HDL to LDL, thus reducing their CE content. Equally, we observed a major decrease (-53%; P < 0.0001) in pre-β1-HDL levels. The capacity of whole plasma to mediate free cholesterol efflux from human macrophages was reduced (-15%; P < 0.02) following LDL apheresis. Such reduction resulted from a marked decrease in the ABCA1-dependent efflux (-71%; P < 0.0001) in the scavenger receptor class B type I-dependent efflux (-21%; P < 0.0001) and in the ABCG1-dependent pathway (-15%; P < 0.04). However, HDL particles isolated from FH patients before and after LDL apheresis displayed a similar capacity to mediate cellular free cholesterol efflux or to deliver CE to hepatic cells. We demonstrate that rapid removal of circulating lipoprotein particles by LDL apheresis transitorily reduces RCT. However, LDL apheresis is without impact on the intrinsic ability of HDL particles to promote either cellular free cholesterol efflux from macrophages or to deliver CE to hepatic cells.
Figures




Similar articles
-
Atheroprotective reverse cholesterol transport pathway is defective in familial hypercholesterolemia.Arterioscler Thromb Vasc Biol. 2011 Jul;31(7):1675-81. doi: 10.1161/ATVBAHA.111.227181. Epub 2011 Apr 28. Arterioscler Thromb Vasc Biol. 2011. PMID: 21527752
-
LDL Receptor Regulates the Reverse Transport of Macrophage-Derived Unesterified Cholesterol via Concerted Action of the HDL-LDL Axis: Insight From Mouse Models.Circ Res. 2020 Aug 28;127(6):778-792. doi: 10.1161/CIRCRESAHA.119.316424. Epub 2020 Jun 4. Circ Res. 2020. PMID: 32495699
-
Cholesterol efflux mediators in homozygous familial hypercholesterolemia patients on low-density lipoprotein apheresis.J Clin Lipidol. 2013 Mar-Apr;7(2):109-16. doi: 10.1016/j.jacl.2012.08.001. Epub 2012 Aug 8. J Clin Lipidol. 2013. PMID: 23415429
-
Foam cells in atherosclerosis.Clin Chim Acta. 2013 Sep 23;424:245-52. doi: 10.1016/j.cca.2013.06.006. Epub 2013 Jun 16. Clin Chim Acta. 2013. PMID: 23782937 Review.
-
Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia.Pharmacol Ther. 2004 Jan;101(1):17-38. doi: 10.1016/j.pharmthera.2003.10.001. Pharmacol Ther. 2004. PMID: 14729390 Review.
Cited by
-
Reverse Cholesterol Transport Dysfunction Is a Feature of Familial Hypercholesterolemia.Curr Atheroscler Rep. 2021 Apr 29;23(6):29. doi: 10.1007/s11883-021-00928-1. Curr Atheroscler Rep. 2021. PMID: 33914189 Review.
-
Clinical and biological relevance of statin-mediated changes in HDL metabolism.Curr Atheroscler Rep. 2014 Jan;16(1):379. doi: 10.1007/s11883-013-0379-8. Curr Atheroscler Rep. 2014. PMID: 24271881 Review.
-
Lowering Low-Density Lipoprotein Particles in Plasma Using Dextran Sulphate Co-Precipitates Procoagulant Extracellular Vesicles.Int J Mol Sci. 2017 Dec 29;19(1):94. doi: 10.3390/ijms19010094. Int J Mol Sci. 2017. PMID: 29286309 Free PMC article.
-
Lomitapide modifies high-density lipoprotein function in homozygous familial hypercholesterolaemia.Eur J Med Res. 2025 Apr 11;30(1):266. doi: 10.1186/s40001-025-02439-0. Eur J Med Res. 2025. PMID: 40211340 Free PMC article. Clinical Trial.
-
High Density Lipoprotein Cholesterol Efflux Capacity and Atherosclerosis in Cardiovascular Disease: Pathophysiological Aspects and Pharmacological Perspectives.Cells. 2021 Mar 5;10(3):574. doi: 10.3390/cells10030574. Cells. 2021. PMID: 33807918 Free PMC article. Review.
References
-
- Jansen A. C., van Wissen S., Defesche J. C., Kastelein J. J. 2002. Phenotypic variability in familial hypercholesterolaemia: an update. Curr. Opin. Lipidol. 13: 165–171 - PubMed
-
- Jansen A. C., van Aalst-Cohen E. S., Tanck M. W., Trip M. D., Lansberg P. J., Liem A. H., van Lennep H. W., Sijbrands E. J., Kastelein J. J. 2004. The contribution of classical risk factors to cardiovascular disease in familial hypercholesterolaemia: data in 2400 patients. J. Intern. Med. 256: 482–490 - PubMed
-
- van Aalst-Cohen E. S., Jansen A. C., Boekholdt S. M., Tanck M. W., Fontecha M. R., Cheng S., Li J., Defesche J. C., Kuivenhoven J. A., Kastelein J. J. 2005. Genetic determinants of plasma HDL-cholesterol levels in familial hypercholesterolemia. Eur. J. Hum. Genet. 13: 1137–1142 - PubMed
-
- Gordon D. J., Probstfield J. L., Garrison R. J., Neaton J. D., Castelli W. P., Knoke J. D., Jacobs D. R., Jr, Bangdiwala S., Tyroler H. A. 1989. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 79: 8–15 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous