Kinetics and fidelity of polymerization by DNA polymerase III from Sulfolobus solfataricus
- PMID: 22339170
- PMCID: PMC3624615
- DOI: 10.1021/bi201799a
Kinetics and fidelity of polymerization by DNA polymerase III from Sulfolobus solfataricus
Abstract
We have biochemically and kinetically characterized the polymerase and exonuclease activities of the third B-family polymerase (Dpo3) from the hyperthermophilic Crenarchaeon, Sulfolobus solfataricus (Sso). We have established through mutagenesis that despite incomplete sequence conservation, the polymerase and exonuclease active sites are functionally conserved in Dpo3. Using pre-steady-state kinetics, we can measure the fidelity of nucleotide incorporation by Dpo3 from the polymerase active site alone to be 10(3)-10(4) at 37 °C. The functional exonuclease proofreading active site will increase fidelity by at least 10(2), making Dpo3 comparable to other DNA polymerases in this family. Additionally, Dpo3's exonuclease activity is modulated by temperature, where a loss of promiscuous degradation activity can be attributed to a reorganization of the exonuclease domain when it is bound to primer-template DNA at high temperatures. Unexpectedly, the DNA binding affinity is weak compared with those of other DNA polymerases of this family. A comparison of the fidelity, polymerization kinetics, and associated functional exonuclease domain with those previously reported for other Sso polymerases (Dpo1 and Dpo4) illustrates that Dpo3 is a potential player in the proper maintenance of the archaeal genome.
Figures








Similar articles
-
Roles of the four DNA polymerases of the crenarchaeon Sulfolobus solfataricus and accessory proteins in DNA replication.J Biol Chem. 2011 Sep 9;286(36):31180-93. doi: 10.1074/jbc.M111.258038. Epub 2011 Jul 22. J Biol Chem. 2011. PMID: 21784862 Free PMC article.
-
Polymerization fidelity of a replicative DNA polymerase from the hyperthermophilic archaeon Sulfolobus solfataricus P2.Biochemistry. 2009 Aug 11;48(31):7492-501. doi: 10.1021/bi900532w. Biochemistry. 2009. PMID: 19456141
-
Kinetic basis for the differing response to an oxidative lesion by a replicative and a lesion bypass DNA polymerase from Sulfolobus solfataricus.Biochemistry. 2012 Apr 24;51(16):3485-96. doi: 10.1021/bi300246r. Epub 2012 Apr 10. Biochemistry. 2012. PMID: 22471521
-
Molecular basis of selectivity of nucleoside triphosphate incorporation opposite O6-benzylguanine by sulfolobus solfataricus DNA polymerase Dpo4: steady-state and pre-steady-state kinetics and x-ray crystallography of correct and incorrect pairing.J Biol Chem. 2007 May 4;282(18):13573-84. doi: 10.1074/jbc.M700656200. Epub 2007 Mar 3. J Biol Chem. 2007. PMID: 17337730
-
Versatility of Y-family Sulfolobus solfataricus DNA polymerase Dpo4 in translesion synthesis past bulky N2-alkylguanine adducts.J Biol Chem. 2009 Feb 6;284(6):3563-76. doi: 10.1074/jbc.M807778200. Epub 2008 Dec 4. J Biol Chem. 2009. PMID: 19059910 Free PMC article.
Cited by
-
Enzymatic Switching Between Archaeal DNA Polymerases Facilitates Abasic Site Bypass.Front Microbiol. 2021 Dec 20;12:802670. doi: 10.3389/fmicb.2021.802670. eCollection 2021. Front Microbiol. 2021. PMID: 34987494 Free PMC article.
-
PolB1 Is Sufficient for DNA Replication and Repair Under Normal Growth Conditions in the Extremely Thermophilic Crenarchaeon Sulfolobus acidocaldarius.Front Microbiol. 2020 Dec 23;11:613375. doi: 10.3389/fmicb.2020.613375. eCollection 2020. Front Microbiol. 2020. PMID: 33424816 Free PMC article.
-
Diversity and evolution of B-family DNA polymerases.Nucleic Acids Res. 2020 Oct 9;48(18):10142-10156. doi: 10.1093/nar/gkaa760. Nucleic Acids Res. 2020. PMID: 32976577 Free PMC article. Review.
-
DNA Polymerases Divide the Labor of Genome Replication.Trends Cell Biol. 2016 Sep;26(9):640-654. doi: 10.1016/j.tcb.2016.04.012. Epub 2016 Jun 1. Trends Cell Biol. 2016. PMID: 27262731 Free PMC article. Review.
-
The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase.PLoS One. 2016 Mar 8;11(3):e0150802. doi: 10.1371/journal.pone.0150802. eCollection 2016. PLoS One. 2016. PMID: 26954034 Free PMC article.
References
-
- Filee J, Forterre P, Sen-Lin T, Laurent J. Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins. J Mol Evol. 2002;54:763–773. - PubMed
-
- Burgers PM, Koonin EV, Bruford E, Blanco L, Burtis KC, Christman MF, Copeland WC, Friedberg EC, Hanaoka F, Hinkle DC, Lawrence CW, Nakanishi M, Ohmori H, Prakash L, Prakash S, Reynaud CA, Sugino A, Todo T, Wang Z, Weill JC, Woodgate R. Eukaryotic DNA polymerases: Proposal for a revised nomenclature. J Biol Chem. 2001;276:43487–43490. - PubMed
-
- Hubscher U, Maga G, Spadari S. Eukaryotic DNA polymerases. Annu Rev Biochem. 2002;71:133–163. - PubMed
-
- Bebenek K, Kunkel TA. Functions of DNA polymerases. Adv Protein Chem. 2004;69:137–165. - PubMed
-
- Kunkel TA, Bebenek K. DNA replication fidelity. Annu Rev Biochem. 2000;69:497–529. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources