Worm-like Ising model for protein mechanical unfolding under the effect of osmolytes
- PMID: 22339871
- PMCID: PMC3260691
- DOI: 10.1016/j.bpj.2011.12.007
Worm-like Ising model for protein mechanical unfolding under the effect of osmolytes
Abstract
We show via single-molecule mechanical unfolding experiments that the osmolyte glycerol stabilizes the native state of the human cardiac I27 titin module against unfolding without shifting its unfolding transition state on the mechanical reaction coordinate. Taken together with similar findings on the immunoglobulin-binding domain of streptococcal protein G (GB1), these experimental results suggest that osmolytes act on proteins through a common mechanism that does not entail a shift of their unfolding transition state. We investigate the above common mechanism via an Ising-like model for protein mechanical unfolding that adds worm-like-chain behavior to a recent generalization of the Wako-Saitô-Muñoz-Eaton model with support for group-transfer free energies. The thermodynamics of the model are exactly solvable, while protein kinetics under mechanical tension can be simulated via Monte Carlo algorithms. Notably, our force-clamp and velocity-clamp simulations exhibit no shift in the position of the unfolding transition state of GB1 and I27 under the effect of various osmolytes. The excellent agreement between experiment and simulation strongly suggests that osmolytes do not assume a structural role at the mechanical unfolding transition state of proteins, acting instead by adjusting the solvent quality for the protein chain analyte.
Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Figures








Similar articles
-
Observing the osmophobic effect in action at the single molecule level.Proteins. 2011 Jul;79(7):2214-23. doi: 10.1002/prot.23045. Epub 2011 May 9. Proteins. 2011. PMID: 21557325
-
Probing osmolyte participation in the unfolding transition state of a protein.Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):9759-64. doi: 10.1073/pnas.1101934108. Epub 2011 May 25. Proc Natl Acad Sci U S A. 2011. Retraction in: Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20850. doi: 10.1073/pnas.1118432108. PMID: 21613570 Free PMC article. Retracted.
-
Single-molecule analysis of osmolyte-mediated nanomechanical unfolding behavior of a protein domain.Int J Biol Macromol. 2023 Dec 31;253(Pt 3):126849. doi: 10.1016/j.ijbiomac.2023.126849. Epub 2023 Sep 16. Int J Biol Macromol. 2023. PMID: 37717878
-
Ising-like model for protein mechanical unfolding.Phys Rev Lett. 2007 Apr 6;98(14):148102. doi: 10.1103/PhysRevLett.98.148102. Epub 2007 Apr 6. Phys Rev Lett. 2007. PMID: 17501316
-
Force as a useful variable in reactions: unfolding RNA.Annu Rev Biophys Biomol Struct. 2004;33:363-85. doi: 10.1146/annurev.biophys.33.110502.140418. Annu Rev Biophys Biomol Struct. 2004. PMID: 15139818 Free PMC article. Review.
Cited by
-
Single-Molecule Chemo-Mechanical Spectroscopy Provides Structural Identity of Folding Intermediates.Biophys J. 2016 Mar 29;110(6):1280-90. doi: 10.1016/j.bpj.2015.12.042. Biophys J. 2016. PMID: 27028638 Free PMC article.
-
The Wako-Saitô-Muñoz-Eaton Model for Predicting Protein Folding and Dynamics.Molecules. 2022 Jul 12;27(14):4460. doi: 10.3390/molecules27144460. Molecules. 2022. PMID: 35889332 Free PMC article. Review.
-
A disorder-induced domino-like destabilization mechanism governs the folding and functional dynamics of the repeat protein IκBα.PLoS Comput Biol. 2013;9(12):e1003403. doi: 10.1371/journal.pcbi.1003403. Epub 2013 Dec 19. PLoS Comput Biol. 2013. PMID: 24367251 Free PMC article.
-
Force-Clamp Rheometry for Characterizing Protein-based Hydrogels.J Vis Exp. 2018 Aug 21;(138):58280. doi: 10.3791/58280. J Vis Exp. 2018. PMID: 30199039 Free PMC article.
-
Protein nanomechanics in biological context.Biophys Rev. 2021 Aug 7;13(4):435-454. doi: 10.1007/s12551-021-00822-9. eCollection 2021 Aug. Biophys Rev. 2021. PMID: 34466164 Free PMC article. Review.
References
-
- Bolen D.W., Rose G.D. Structure and energetics of the hydrogen-bonded backbone in protein folding. Annu. Rev. Biochem. 2008;77:339–362. - PubMed
-
- Kumar S., Li M.S. Biomolecules under mechanical force. Phys. Rep. 2010;486:1–74.
-
- Aioanei D., Samorì B., Brucale M. Maximum likelihood estimation of protein kinetic parameters under weak assumptions from unfolding force spectroscopy experiments. Phys. Rev. E. 2009;80:061916. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources