Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells
- PMID: 22340595
- PMCID: PMC3297962
- DOI: 10.1016/j.ccr.2011.12.024
Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells
Abstract
The PI3K/mTOR-pathway is the most commonly dysregulated pathway in epithelial cancers and represents an important target for cancer therapeutics. Here, we show that dual inhibition of PI3K/mTOR in ovarian cancer-spheroids leads to death of inner matrix-deprived cells, whereas matrix-attached cells are resistant. This matrix-associated resistance is mediated by drug-induced upregulation of cellular survival programs that involve both FOXO-regulated transcription and cap-independent translation. Inhibition of any one of several upregulated proteins, including Bcl-2, EGFR, or IGF1R, abrogates resistance to PI3K/mTOR inhibition. These results demonstrate that acute adaptive responses to PI3K/mTOR inhibition in matrix-attached cells resemble well-conserved stress responses to nutrient and growth factor deprivation. Bypass of this resistance mechanism through rational design of drug combinations could significantly enhance PI3K-targeted drug efficacy.
Copyright © 2012 Elsevier Inc. All rights reserved.
Figures
References
-
- Ackler S, Xiao Y, Mitten MJ, Foster K, Oleksijew A, Refici M, Schlessinger S, Wang B, Chemburkar SR, Bauch J, et al. ABT-263 and rapamycin act cooperatively to kill lymphoma cells in vitro and in vivo. Molecular Cancer Therapeutics. 2008;7:3265–3274. - PubMed
-
- Baselga J. Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist. 2011;16(Suppl 1):12–19. - PubMed
-
- Braunstein S, Karpisheva K, Pola C, Goldberg J, Hochman T, Yee H, Cangiarella J, Arju R, Formenti SC, Schneider RJ. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell. 2007;28:501–512. - PubMed
-
- Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–868. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous
