Characterizing variation in the functional connectome: promise and pitfalls
- PMID: 22341211
- PMCID: PMC3882689
- DOI: 10.1016/j.tics.2012.02.001
Characterizing variation in the functional connectome: promise and pitfalls
Abstract
The functional MRI (fMRI) community has zealously embraced resting state or intrinsic functional connectivity approaches to mapping brain organization. Having demonstrated their utility for charting the large-scale functional architecture of the brain, the field is now leveraging task-independent methods for the investigation of phenotypic variation and the identification of biomarkers for clinical conditions. Enthusiasm aside, questions regarding the significance and validity of intrinsic brain phenomena remain. Here, we discuss these challenges and outline current developments that, in moving the field toward discovery science, permit a shift from cartography toward a mechanistic understanding of the neural bases of variation in cognition, emotion and behavior.
Copyright © 2012. Published by Elsevier Ltd.
Figures


Similar articles
-
The history and future of resting-state functional magnetic resonance imaging.Nature. 2025 May;641(8065):1121-1131. doi: 10.1038/s41586-025-08953-9. Epub 2025 May 28. Nature. 2025. PMID: 40437164 Review.
-
Evaluating methods for measuring background connectivity in slow event-related functional magnetic resonance imaging designs.Brain Behav. 2023 Jun;13(6):e3015. doi: 10.1002/brb3.3015. Epub 2023 Apr 16. Brain Behav. 2023. PMID: 37062880 Free PMC article.
-
Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging.Neurosurg Focus. 2020 Feb 1;48(2):E9. doi: 10.3171/2019.11.FOCUS19773. Neurosurg Focus. 2020. PMID: 32006946 Free PMC article. Review.
-
Resting-state fMRI: a review of methods and clinical applications.AJNR Am J Neuroradiol. 2013 Oct;34(10):1866-72. doi: 10.3174/ajnr.A3263. Epub 2012 Aug 30. AJNR Am J Neuroradiol. 2013. PMID: 22936095 Free PMC article. Review.
-
Functional density and edge maps: Characterizing functional architecture in individuals and improving cross-subject registration.Neuroimage. 2017 Sep;158:346-355. doi: 10.1016/j.neuroimage.2017.07.019. Epub 2017 Jul 14. Neuroimage. 2017. PMID: 28716714 Free PMC article.
Cited by
-
Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets.Brain Imaging Behav. 2020 Dec;14(6):2378-2416. doi: 10.1007/s11682-019-00191-8. Brain Imaging Behav. 2020. PMID: 31691160 Free PMC article.
-
A multivariate distance-based analytic framework for connectome-wide association studies.Neuroimage. 2014 Jun;93 Pt 1(0 1):74-94. doi: 10.1016/j.neuroimage.2014.02.024. Epub 2014 Feb 28. Neuroimage. 2014. PMID: 24583255 Free PMC article.
-
A functional connectome phenotyping dataset including cognitive state and personality measures.Sci Data. 2019 Feb 12;6:180307. doi: 10.1038/sdata.2018.307. Sci Data. 2019. PMID: 30747913 Free PMC article.
-
Big data, open science and the brain: lessons learned from genomics.Front Hum Neurosci. 2014 May 16;8:239. doi: 10.3389/fnhum.2014.00239. eCollection 2014. Front Hum Neurosci. 2014. PMID: 24904347 Free PMC article. Review.
-
Developmental Connectomics from Infancy through Early Childhood.Trends Neurosci. 2017 Aug;40(8):494-506. doi: 10.1016/j.tins.2017.06.003. Epub 2017 Jul 3. Trends Neurosci. 2017. PMID: 28684174 Free PMC article. Review.
References
-
- Biswal B, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–541. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical