Manipulating cellular processes using optical control of protein-protein interactions
- PMID: 22341323
- DOI: 10.1016/B978-0-444-59426-6.00006-9
Manipulating cellular processes using optical control of protein-protein interactions
Abstract
Tools for optical control of proteins offer an unprecedented level of spatiotemporal control over biological processes, adding a new layer of experimental opportunity. While use of light-activated cation channels and anion pumps has already revolutionized neurobiology, an emerging class of more general optogenetic tools may have similar transformative effects. These tools consist of light-dependent protein interaction modules that allow control of target protein interactions and localization with light. Such tools are modular and can be applied to regulate a wide variety of biological activities. This chapter reviews the different properties of light-induced dimerization systems, based on plant phytochromes, cryptochromes, and light-oxygen-voltage domain proteins, exploring advantages and limitations of the different systems and practical considerations related to their use. Potential applications of these tools within the neurobiology field, including light control of various signaling pathways, neuronal activity, and DNA recombination and transcription, are discussed.
Copyright © 2012 Elsevier B.V. All rights reserved.
Similar articles
-
Two-photon optogenetics.Prog Brain Res. 2012;196:119-43. doi: 10.1016/B978-0-444-59426-6.00007-0. Prog Brain Res. 2012. PMID: 22341324 Review.
-
Let there be light: zebrafish neurobiology and the optogenetic revolution.Rev Neurosci. 2011;22(1):121-30. doi: 10.1515/RNS.2011.013. Rev Neurosci. 2011. PMID: 21615266 Review.
-
A comprehensive concept of optogenetics.Prog Brain Res. 2012;196:1-28. doi: 10.1016/B978-0-444-59426-6.00001-X. Prog Brain Res. 2012. PMID: 22341318 Review.
-
Zebrafish as an appealing model for optogenetic studies.Prog Brain Res. 2012;196:145-62. doi: 10.1016/B978-0-444-59426-6.00008-2. Prog Brain Res. 2012. PMID: 22341325 Review.
-
Optogenetic excitation of neurons with channelrhodopsins: light instrumentation, expression systems, and channelrhodopsin variants.Prog Brain Res. 2012;196:29-47. doi: 10.1016/B978-0-444-59426-6.00002-1. Prog Brain Res. 2012. PMID: 22341319 Review.
Cited by
-
pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis.J Cell Biol. 2014 Nov 10;207(3):419-32. doi: 10.1083/jcb.201404107. J Cell Biol. 2014. PMID: 25385186 Free PMC article.
-
Site-specific promoter caging enables optochemical gene activation in cells and animals.J Am Chem Soc. 2014 May 14;136(19):7152-8. doi: 10.1021/ja500327g. Epub 2014 May 6. J Am Chem Soc. 2014. PMID: 24802207 Free PMC article.
-
Optogenetic control of intracellular signaling pathways.Trends Biotechnol. 2015 Feb;33(2):92-100. doi: 10.1016/j.tibtech.2014.11.007. Epub 2014 Dec 17. Trends Biotechnol. 2015. PMID: 25529484 Free PMC article. Review.
-
Precise modulation of embryonic development through optogenetics.Genesis. 2022 Dec;60(10-12):e23505. doi: 10.1002/dvg.23505. Epub 2022 Dec 7. Genesis. 2022. PMID: 36478118 Free PMC article. Review.
-
Optogenetic Delineation of Receptor Tyrosine Kinase Subcircuits in PC12 Cell Differentiation.Cell Chem Biol. 2019 Mar 21;26(3):400-410.e3. doi: 10.1016/j.chembiol.2018.11.004. Epub 2018 Dec 27. Cell Chem Biol. 2019. PMID: 30595532 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources