Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May;58(2):238-44.
doi: 10.1016/j.cyto.2012.01.018. Epub 2012 Feb 17.

The adiponectin paralog C1q/TNF-related protein 3 (CTRP3) stimulates testosterone production through the cAMP/PKA signaling pathway

Affiliations

The adiponectin paralog C1q/TNF-related protein 3 (CTRP3) stimulates testosterone production through the cAMP/PKA signaling pathway

Masataka Otani et al. Cytokine. 2012 May.

Abstract

CTRP3, a paralog of adiponectin, is a member of the C1q and tumor necrosis factor (TNF)-related protein (CTRP) superfamily. It is expressed at high levels in adipose tissue and has recently emerged as a novel adipokine. In the present study, we provide the first evidence for a physiological role of the new adipokine, CTRP3, in the reproductive system. CTRP3 was specifically expressed in interstitial Leydig cells, where testosterone is produced, in the adult mouse testis. CTRP3 increased testosterone production by TM3 mouse Leydig cells in a dose-dependent manner. The increased testosterone production was linked to upregulation of steroidogenic proteins expression, such as steroidogenic acute regulatory (StAR) protein and cholesterol side-chain cleavage cytochrome P450 (P450scc). Moreover, increases in intracellular cyclic AMP (cAMP) concentrations and the phosphorylation of cAMP-response element binding protein (CREB) in CTRP3-stimulated TM3 Leydig cells were observed. Inhibition of this signaling pathway by a specific protein kinase A (PKA) inhibitor, H89, blocked testosterone production in CTRP3-stimulated Leydig cells, suggesting that the stimulatory effect of CTRP3 on testosterone production is associated with activation of the cAMP/PKA signaling pathway. Thus, our results demonstrate a physiological role for CTRP3 in testicular steroidogenesis and provide novel insights in the intracellular mechanisms activated by this protein.

PubMed Disclaimer

Publication types

LinkOut - more resources