A single-atom transistor
- PMID: 22343383
- DOI: 10.1038/nnano.2012.21
A single-atom transistor
Abstract
The ability to control matter at the atomic scale and build devices with atomic precision is central to nanotechnology. The scanning tunnelling microscope can manipulate individual atoms and molecules on surfaces, but the manipulation of silicon to make atomic-scale logic circuits has been hampered by the covalent nature of its bonds. Resist-based strategies have allowed the formation of atomic-scale structures on silicon surfaces, but the fabrication of working devices-such as transistors with extremely short gate lengths, spin-based quantum computers and solitary dopant optoelectronic devices-requires the ability to position individual atoms in a silicon crystal with atomic precision. Here, we use a combination of scanning tunnelling microscopy and hydrogen-resist lithography to demonstrate a single-atom transistor in which an individual phosphorus dopant atom has been deterministically placed within an epitaxial silicon device architecture with a spatial accuracy of one lattice site. The transistor operates at liquid helium temperatures, and millikelvin electron transport measurements confirm the presence of discrete quantum levels in the energy spectrum of the phosphorus atom. We find a charging energy that is close to the bulk value, previously only observed by optical spectroscopy.
Similar articles
-
Spin read-out in atomic qubits in an all-epitaxial three-dimensional transistor.Nat Nanotechnol. 2019 Feb;14(2):137-140. doi: 10.1038/s41565-018-0338-1. Epub 2019 Jan 7. Nat Nanotechnol. 2019. PMID: 30617309
-
Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor.Nat Nanotechnol. 2012 Jul 1;7(7):443-7. doi: 10.1038/nnano.2012.94. Nat Nanotechnol. 2012. PMID: 22751223
-
Single-Atom Control of Arsenic Incorporation in Silicon for High-Yield Artificial Lattice Fabrication.Adv Mater. 2024 Jun;36(24):e2312282. doi: 10.1002/adma.202312282. Epub 2024 Mar 22. Adv Mater. 2024. PMID: 38380859 Free PMC article.
-
Issues of nanoelectronics: a possible roadmap.J Nanosci Nanotechnol. 2002 Jun-Aug;2(3-4):235-66. doi: 10.1166/jnn.2002.115. J Nanosci Nanotechnol. 2002. PMID: 12908252 Review.
-
Atomically Precise Manufacturing of Silicon Electronics.ACS Nano. 2024 Mar 5;18(9):6766-6816. doi: 10.1021/acsnano.3c10412. Epub 2024 Feb 20. ACS Nano. 2024. PMID: 38376086 Free PMC article. Review.
Cited by
-
High-fidelity initialization and control of electron and nuclear spins in a four-qubit register.Nat Nanotechnol. 2024 May;19(5):605-611. doi: 10.1038/s41565-023-01596-9. Epub 2024 Feb 7. Nat Nanotechnol. 2024. PMID: 38326467 Free PMC article.
-
Room Temperature Incorporation of Arsenic Atoms into the Germanium (001) Surface.Angew Chem Int Ed Engl. 2023 Feb 6;62(7):e202213982. doi: 10.1002/anie.202213982. Epub 2023 Jan 10. Angew Chem Int Ed Engl. 2023. PMID: 36484458 Free PMC article.
-
Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach.Nanoscale. 2016 Aug 7;8(29):13838-58. doi: 10.1039/c6nr01524g. Epub 2016 May 5. Nanoscale. 2016. PMID: 27146961 Free PMC article.
-
Silicon epitaxy on H-terminated Si (100) surfaces at 250 °C.Appl Surf Sci. 2016 Aug 15;378:301-307. doi: 10.1016/j.apsusc.2016.03.212. Epub 2016 Mar 31. Appl Surf Sci. 2016. PMID: 27397949 Free PMC article.
-
Identifying and manipulating single atoms with scanning transmission electron microscopy.Chem Commun (Camb). 2022 Nov 3;58(88):12274-12285. doi: 10.1039/d2cc04807h. Chem Commun (Camb). 2022. PMID: 36260089 Free PMC article. Review.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources