Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1990 Fall;14(3):323-38.
doi: 10.1016/s0149-7634(05)80042-9.

Pancreatic glucagon signals postprandial satiety

Affiliations
Review

Pancreatic glucagon signals postprandial satiety

N Geary. Neurosci Biobehav Rev. 1990 Fall.

Abstract

The hypothesis that prandial increases in circulating pancreatic glucagon initiates an important peripheral satiety signal is reviewed. Glucagon administration at the beginning of meals reduces the size of test meals in animals and humans and reduces the size of spontaneous meals in rats. Exogenous glucagon may also interact synergistically with cholecystokinin to inhibit feeding. These appear to be satiety effects because they are behaviorally specific in rats and subjectively specific in humans. Glucagon's pharmacological satiety effect is complemented by compelling evidence for a necessary contribution of endogenous glucagon to the control of meal size: administration of glucagon antibodies increases both test and spontaneous meal size in rats. Under many, but not all, conditions exogenous glucagon's satiety effect appears to originate in the liver and to be relayed to the brain via hepatic vagal afferents. Analysis of the central processing of this signal, however, has barely begun. How glucagon changes are transduced into neural afferent signals also remains an open question. The only hypothesis that has been extensively tested is that stimulation of hepatic glucose production initiates the satiety signal, but this is neither convincingly supported nor clearly rejected by currently available data. It is also not yet clear whether glucagon contributes to some forms of obesity or has potential use as a therapeutic tool in the control of eating disorders. Of the several proposed controls of hunger and satiety, glucagon appears to be one of the most likely to be physiologically relevant. This encourages further analysis of its behavioral characteristics, its neural mechanisms, and its clinical potential.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources