Waveguide-based biosensors for pathogen detection
- PMID: 22346727
- PMCID: PMC3274158
- DOI: 10.3390/s90705783
Waveguide-based biosensors for pathogen detection
Abstract
Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic) are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave-the evanescent field-whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, "dirty" biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning's EPIC(®) Ô, SRU Biosystems' BIND(™), Zeptosense(®), etc.) and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing.
Keywords: biosensors; fluorescence; immunoassay; pathogen sensor; planar optical waveguides; thin film.
Figures












Similar articles
-
Evanescent field Sensors Based on Tantalum Pentoxide Waveguides - A Review.Sensors (Basel). 2008 Jan 6;8(2):711-738. doi: 10.3390/s8020711. Sensors (Basel). 2008. PMID: 27879731 Free PMC article. Review.
-
Integrated planar optical waveguide interferometer biosensors: a comparative review.Biosens Bioelectron. 2014 Aug 15;58:287-307. doi: 10.1016/j.bios.2014.02.049. Epub 2014 Feb 28. Biosens Bioelectron. 2014. PMID: 24658026 Review.
-
Introduction to Photonics: Principles and the Most Recent Applications of Microstructures.Micromachines (Basel). 2018 Sep 11;9(9):452. doi: 10.3390/mi9090452. Micromachines (Basel). 2018. PMID: 30424385 Free PMC article. Review.
-
Enhancing Evanescent Wave Coupling of Near-Surface Waveguides with Plasmonic Nanoparticles.Sensors (Basel). 2023 Apr 13;23(8):3945. doi: 10.3390/s23083945. Sensors (Basel). 2023. PMID: 37112288 Free PMC article.
-
Resonant Grating without a Planar Waveguide Layer as a Refractive Index Sensor.Sensors (Basel). 2019 Jul 8;19(13):3003. doi: 10.3390/s19133003. Sensors (Basel). 2019. PMID: 31288404 Free PMC article.
Cited by
-
On the Effect of Soft Molecularly Imprinted Nanoparticles Receptors Combined to Nanoplasmonic Probes for Biomedical Applications.Front Bioeng Biotechnol. 2021 Dec 21;9:801489. doi: 10.3389/fbioe.2021.801489. eCollection 2021. Front Bioeng Biotechnol. 2021. PMID: 34993190 Free PMC article.
-
Optical Biosensors for Diagnostics of Infectious Viral Disease: A Recent Update.Diagnostics (Basel). 2021 Nov 10;11(11):2083. doi: 10.3390/diagnostics11112083. Diagnostics (Basel). 2021. PMID: 34829430 Free PMC article. Review.
-
Total internal reflection photoacoustic spectroscopy for the detection of β-hematin.J Biomed Opt. 2012 Jun;17(6):061212. doi: 10.1117/1.JBO.17.6.061212. J Biomed Opt. 2012. PMID: 22734742 Free PMC article.
-
Integrated optical waveguide-based fluorescent immunosensor for fast and sensitive detection of microcystin-LR in lakes: Optimization and Analysis.Sci Rep. 2017 Jun 16;7(1):3655. doi: 10.1038/s41598-017-03939-8. Sci Rep. 2017. PMID: 28623299 Free PMC article.
-
Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform.Biosens Bioelectron. 2010 Dec 15;26(4):1283-91. doi: 10.1016/j.bios.2010.07.010. Epub 2010 Jul 12. Biosens Bioelectron. 2010. PMID: 20708399 Free PMC article.
References
-
- Rowe-Taitt C., Anderson G., Lingerfelt B., Feldstein M., Ligler F. Nine-Analyte Detection Using an Array-based Biosensor. Anal. Chem. 2002;74:6114–6120. - PubMed
-
- Plowman T.E., Durstchi J., Wang H., Christensen D., Heron J., Reichert W. Multi-Analyte Fluoroimmunoassay Using an Integrated Optical Waveguide Sensor. Anal. Chem. 1999;71:4344–4352. - PubMed
-
- Lukosz W., Tiefenthaler K. Directional Switching in Planar Waveguides Effected by Absorbtion-Desorbtion Processes. Institution of Electrical Engineers. 2nd European Conference of Integrated Optics; Florence, Italy. October 17–18; 1983. pp. 152–155. Conference Publication No. 227,
-
- Lukosz W., Tiefenthaler K. Integrated Optical Chemical and Direct Biochemical Sensors. Sens. Actuators B. 1995;29:37–50.
-
- Nishihara H., Haruna M., Suhara T. Optical Integrated Circuits. McGraw-Hill Book Company; New York, NY, USA: 1985. pp. 41–49.
LinkOut - more resources
Full Text Sources
Other Literature Sources