Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(2):e31380.
doi: 10.1371/journal.pone.0031380. Epub 2012 Feb 14.

Effects of a caffeine-containing energy drink on simulated soccer performance

Affiliations

Effects of a caffeine-containing energy drink on simulated soccer performance

Juan Del Coso et al. PLoS One. 2012.

Abstract

Background: To investigate the effects of a caffeine-containing energy drink on soccer performance during a simulated game. A second purpose was to assess the post-exercise urine caffeine concentration derived from the energy drink intake.

Methodology/principal findings: Nineteen semiprofessional soccer players ingested 630 ± 52 mL of a commercially available energy drink (sugar-free Red Bull®) to provide 3 mg of caffeine per kg of body mass, or a decaffeinated control drink (0 mg/kg). After sixty minutes they performed a 15-s maximal jump test, a repeated sprint test (7 × 30 m; 30 s of active recovery) and played a simulated soccer game. Individual running distance and speed during the game were measured using global positioning satellite (GPS) devices. In comparison to the control drink, the ingestion of the energy drink increased mean jump height in the jump test (34.7 ± 4.7 v 35.8 ± 5.5 cm; P<0.05), mean running speed during the sprint test (25.6 ± 2.1 v 26.3 ± 1.8 km · h(-1); P<0.05) and total distance covered at a speed higher than 13 km · h(-1) during the game (1205 ± 289 v 1436 ± 326 m; P<0.05). In addition, the energy drink increased the number of sprints during the whole game (30 ± 10 v 24 ± 8; P<0.05). Post-exercise urine caffeine concentration was higher after the energy drink than after the control drink (4.1 ± 1.0 v 0.1 ± 0.1 µg · mL(-1); P<0.05).

Conclusions/significance: A caffeine-containing energy drink in a dose equivalent to 3 mg/kg increased the ability to repeatedly sprint and the distance covered at high intensity during a simulated soccer game. In addition, the caffeinated energy drink increased jump height which may represent a meaningful improvement for headers or when players are competing for a ball.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Vertical jump height during a 15-s maximal jump test.
Vertical jump height during a 15-s maximal jump test with the ingestion of a caffeinated energy drink (3 mg of caffeine/kg of body weight) or the ingestion of a decaffeinated control drink. Data are mean ± SD for 19 soccer players. * Different from control (P<0.05).
Figure 2
Figure 2. Maximal running speed during a 7×30 m sprint test.
Maximal running speed during a 7×30 m sprint test with the ingestion of a caffeinated energy drink (3 mg of caffeine/kg of body weight) or the ingestion of a decaffeinated control drink. Data are mean ± SD for 19 soccer players. * Different from control (P<0.05).
Figure 3
Figure 3. Running distance at 10 min intervals during a simulated soccer game.
Running distance at 10 min intervals during a simulated soccer game with the ingestion of a caffeinated energy drink (3 mg of caffeine/kg of body weight) or the ingestion of a decaffeinated control drink. Data are mean ± SD for 19 soccer players. * Different from control (P<0.05).
Figure 4
Figure 4. Running distance covered at different speeds during a simulated soccer game.
Running distance covered at different speeds during a simulated soccer game with the ingestion of a caffeinated energy drink (3 mg of caffeine/kg of body weight) or the ingestion of a decaffeinated control drink. Data are mean ± SD for 19 soccer players. * Different from control (P<0.05). Dashed lines indicate the half time. Zone 1 (Standing) = 0–0.4 Km · H−1; Zone 2 (Walking) = 0.5–3.0 Km · H−1; Zone 3 (Low-Intensity Running) = 3.1–8.0 Km · H−1; Zone 4 (Medium-Intensity Running) = 8.1–13.0 Km · H−1; Zone 5 (High-Intensity Running) = 13.1–18.0 Km · H−1; Zone 6 (Sprinting) = Speed Higher Than 18.0 Km · H−1.

References

    1. Coso JD, Muñoz G, Muñoz-Guerra J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl Physiol Nutr Metab. 2011;36:555–561. - PubMed
    1. Clauson KA, Shields KM, McQueen CE, Persad N. Safety issues associated with commercially available energy drinks. J Am Pharm Assoc (2003) 2008;48:e55–63; quiz e64–57. - PubMed
    1. Froiland K, Koszewski W, Hingst J, Kopecky L. Nutritional supplement use among college athletes and their sources of information. Int J Sport Nutr Exerc Metab. 2004;14:104–120. - PubMed
    1. Kristiansen M, Levy-Milne R, Barr S, Flint A. Dietary supplement use by varsity athletes at a Canadian university. Int J Sport Nutr Exerc Metab. 2005;15:195–210. - PubMed
    1. Hoffman JR. Caffeine and energy drinks. Strength and Conditioning Journal. 2010;32:15–20.