Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(2):e31862.
doi: 10.1371/journal.pone.0031862. Epub 2012 Feb 14.

MiRNA genes constitute new targets for microsatellite instability in colorectal cancer

Affiliations

MiRNA genes constitute new targets for microsatellite instability in colorectal cancer

Nizar El-Murr et al. PLoS One. 2012.

Abstract

Mismatch repair-deficient colorectal cancers (CRC) display widespread instability at DNA microsatellite sequences (MSI). Although MSI has been reported to commonly occur at coding repeats, leading to alterations in the function of a number of genes encoding cancer-related proteins, nothing is known about the putative impact of this process on non-coding microRNAs. In miRbase V15, we identified very few human microRNA genes with mono- or di-nucleotide repeats (n = 27). A mutational analysis of these sequences in a large series of MSI CRC cell lines and primary tumors underscored instability in 15 of the 24 microRNA genes successfully studied at variable frequencies ranging from 2.5% to 100%. Following a maximum likelihood statistical method, microRNA genes were separated into two groups that differed significantly in their mutation frequencies and in their tendency to represent mutations that may or may not be under selective pressures during MSI tumoral progression. The first group included 21 genes that displayed no or few mutations in CRC. The second group contained three genes, i.e., hsa-mir-1273c, hsa-mir-1303 and hsa-mir-567, with frequent (≥ 80%) and sometimes bi-allelic mutations in MSI tumors. For the only one expressed in colonic tissues, hsa-mir-1303, no direct link was found between the presence or not of mono- or bi-allelic alterations and the levels of mature miR expression in MSI cell lines, as determined by sequencing and quantitative PCR respectively. Overall, our results provide evidence that DNA repeats contained in human miRNA genes are relatively rare and preserved from mutations due to MSI in MMR-deficient cancer cells. Functional studies are now required to conclude whether mutated miRNAs, and especially the miR-1303, might have a role in MSI tumorigenesis.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Representative scheme of miRNA hairpins with repeats spaning different locations.
The basal segment (BS, single-stranded RNA), stem (S, double-stranded RNA) and terminal loop (L) are designated. The duplex (D, containing one or two potential miRs) is considered as a different entity and therefore distinguished from the stem region. Regions of the hairpin covered by MNRs or DNRs are noted for each miRNAs. To the left of the scheme are miRNA genes whose sequence repeats overlap two regions.
Figure 2
Figure 2. Correlation between the lengths of mononucleotide repeats in miRNAs and their mutation rates in MSI CRCs.
Note the highly significant correlation observed.
Figure 3
Figure 3. Classification of miRNAs with MNR according to their mutation frequencies in MSI CRCs.
Two distinct groups of miRNAs with MNR are established based on their mutation frequencies in MSI primary tumors. The cut-off value is calculated by the ratio of likelihood statistical method and is marked by a dashed vertical line. Note that hsa-mir-644 is included in the group of miRNAs rarely or not mutated in MSI CRCs (n = 18, frequency of mutation <25%) whereas hsa-mir-1273c, hsa-mir-567 and hsa-mir-1303 constitute the group of miRNAs frequently altered (n = 3, frequency of mutation >75%).
Figure 4
Figure 4. MNR instabilities in hsa-mir-1273c (T11), hsa-mir-567 (A13) and hsa-mir-1303 (T13).
Allelic profiles for several MSI CRC cell lines and primary tumors are shown. Normal profiles are defined in LBL and MSS cell lines and primary tumors. For monomorphic genes, a dashed vertical line indicates the unique allele. The polymorphic zone for hsa-mir-1303 is defined between two dashed vertical lines going along the 2 alleles (see Figure S1). Sizes (bp) are indicated in a box below each profile. Various allelic deletions ranging from 1 to 4 bp were observed in MSI CRC cell lines and primary tumors and are indicated in bold. The observed deletions were sometimes bi-allelic in MSI CRC cell lines. In MSI primary tumors, the allelic profiles were also highly suggestive of bi-allelic mutations. Due to the inherent polymorphism that can modify the length of the sequence, the hairpin sequence of hsa-mir-1303 was determined for a correct and reliable evaluation of the alterations in MSI CRC cell lines (see Table S2).
Figure 5
Figure 5. Secondary structures of WT and mutated hsa-mir-1303 and expression levels of miR-1303 in CRC cell lines.
A: Alterations in repeat sequences of hsa-mir-1303 (A) and its variant (delA) did not seem to affect overall the secondary structure of the hairpin but the dimension of the loop (annoted inside) is slightly reduced as determined by mfold software (http://mfold.rna.albany.edu/). Mature miR (bold letters) and MNR (underlined letters) are shown in both hairpin sequences. The arrows indicate the potential positions of an Adenine deletion that leads to an enlargement of the loop. B: Comparison of the relative expressions of mature miR-1303 in MSS (unaltered MNR) and MSI CRC cell lines with none, mono- or bi-allelic mutations of hsa-mir-1303. MiR expression was normalized to the expression of RNU48. Means are shown for each group (black horizontal line). A significant increase in the expression of miR-1303 was observed between MSS cell lines and normal colonic mucosae (p = 0.012). C: Absence of correlation between the size of mir-1303 loop and the levels of mature miR-1303 expression in MSI cell lines with no (HCT-8, TC7) or bi-allelic mutations (LS411, RKO, LIM2405, KM12, LoVo, HCT116) in MNR of hsa-mir-1303. Note cell lines that produce hairpin precursors with the same size of the loop do express mature miR-1303 at various levels.

Similar articles

Cited by

References

    1. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102–114. - PubMed
    1. Melo SA, Esteller M. Dysregulation of microRNAs in cancer: Playing with fire. FEBS Lett. 2011 in press. - PubMed
    1. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–269. - PubMed
    1. Olena AF, Patton JG. Genomic organization of microRNAs. J Cell Physiol. 2010;222:540–545. - PMC - PubMed
    1. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228–234. - PubMed

Publication types