Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Feb 21:7:2.
doi: 10.1186/1745-6673-7-2.

Six-month low level chlorine dioxide gas inhalation toxicity study with two-week recovery period in rats

Affiliations

Six-month low level chlorine dioxide gas inhalation toxicity study with two-week recovery period in rats

Akinori Akamatsu et al. J Occup Med Toxicol. .

Abstract

Background: Chlorine dioxide (CD) gas has a potent antimicrobial activity at extremely low concentration and may serve as a new tool for infection control occupationally as well as publicly. However, it remains unknown whether the chronic exposure of CD gas concentration effective against microbes is safe. Therefore, long-term, low concentration CD gas inhalation toxicity was studied in rats as a six-month continuous whole-body exposure followed by a two-week recovery period, so as to prove that the CD gas exposed up to 0.1 ppm (volume ratio) is judged as safe on the basis of a battery of toxicological examinations.

Methods: CD gas at 0.05 ppm or 0.1 ppm for 24 hours/day and 7 days/week was exposed to rats for 6 months under an unrestrained condition with free access to chow and water in a chamber so as to simulate the ordinary lifestyle in human. The control animals were exposed to air only. During the study period, the body weight as well as the food and water consumptions were recorded. After the 6-month exposure and the 2-week recovery period, animals were sacrificed and a battery of toxicological examinations, including biochemistry, hematology, necropsy, organ weights and histopathology, were performed.

Results: Well regulated levels of CD gas were exposed throughout the chamber over the entire study period. No CD gas-related toxicity sign was observed during the whole study period. No significant difference was observed in body weight gain, food and water consumptions, and relative organ weight. In biochemistry and hematology examinations, changes did not appear to be related to CD gas toxicity. In necropsy and histopathology, no CD gas-related toxicity was observed even in expected target respiratory organs.

Conclusions: CD gas up to 0.1 ppm, exceeding the level effective against microbes, exposed to whole body in rats continuously for six months was not toxic, under a condition simulating the conventional lifestyle in human.

PubMed Disclaimer

Figures

Figure 1
Figure 1
A schematic diagram of the set-up of a CD gas exposure chamber. CD gas discharged from the CD gas generator shown at the left was mixed with air by an airfoil fan, then sent to a mixing chamber and flown through a perforated, flow lamination plate to yield an even, regulated concentration CD gas flow throughout cages housing animals in the exposure chamber. A probe of CD gas detector was placed in the middle of the chamber to monitor the CD gas concentration continuously. The ventilation rate in the chamber was 30 times per hour. In order to ensure the even exposure of CD gat to rats, the position of cages were rotated once weekly. In an experiment prior to the study, it was confirmed that the existence of animals, chow, water, and excrements did not affect the flowing CD concentration (data not shown). It was also confirmed that the CD gas concentration was equal at the inlet and at the outlet as well as at the center of the chamber (data not shown).
Figure 2
Figure 2
Time course of changes in the concentration of CD gas in each chamber. CD gas concentration in each chamber was measured continuously throughout the exposure period for six months. To avoid the Figure looking too busy, symbols show the mean of weekly CD gas concentration (open square: control (air); open circle: 0.05 ppm; closed circle: 0.1 ppm), and error bars represent standard deviations. Throughout the exposure period for six months, there was no tendency of increase or decrease of CD gas concentration, and the fluctuation of the CD gas level was kept within ± 25%, irrespective of the CD dose level. The mean ± standard deviation of CD gas concentration during the exposure period for the low concentration chamber was 0.054 ± 0.007 ppm, and that for the high concentration chamber was 0.103 ± 0.011 ppm.
Figure 3
Figure 3
Body weight changes in rats exposed to CD gas. Arrows represent the end of the exposure period and the start of the recovery period. (A); Males, and (B); females. Symbols (open square: control; open circle: 0.05 ppm, and closed circle: 0.1 ppm) show the mean body weight and error bars represent the standard deviation. The body weight of animals was measured once weekly. The number of rats for calculating mean ± standard deviations was 16 during the exposure period and 6 during the recovery period. There was no statistically significant change observed between the CD gas-exposed group and the control group throughout the study period.
Figure 4
Figure 4
Food and water consumptions of rats exposed to CD gas. Arrows represent the end of the exposure period and the start of the recovery period. (A); food consumption in males, (B); food consumption in females, (C); water consumption in males, and (D); water consumption in females. Symbols (open square: control; open circle: 0.05 ppm, and closed circle: 0.1 ppm) show the mean of food and water consumptions and the error bars represent standard deviations. The measurement was performed once weekly. The number of rats for calculating the mean ± standard deviations was 16 during the exposure period and 6 during the recovery period. There was no statistically significant difference between the CD gas-exposed group and the control group throughout the study period, irrespective of the CD gas exposure concentration.

Similar articles

Cited by

References

    1. Fukayama MY, Tan H, Wheeler WB, Wei CI. Reactions of aqueous chlorine and chlorine dioxide with model food compounds. Environ Health Perspect. 1986;69:267–274. - PMC - PubMed
    1. Moran T, Pace J, McDermott EE. Interaction of chlorine dioxide with flour: certain aspects. Nature. 1953;171:103–106. doi: 10.1038/171103a0. - DOI - PubMed
    1. Ogata N. Denaturation of protein by chlorine dioxide: oxidative modification of tryptophan and tyrosine residues. Biochemistry. 2007;46:4898–4911. doi: 10.1021/bi061827u. - DOI - PubMed
    1. Eleraky NZ, Potgieter LN, Kennedy MA. Virucidal efficacy of four new disinfectants. JAAHA. 2002;38:231–234. - PubMed
    1. Foschino R, Nervegna I, Motta A, Galli A. Bactericidal activity of chlorine dioxide against Escherichia coli in water and on hard surfaces. J Food Protect. 1998;61:668–672. - PubMed

LinkOut - more resources