Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Apr 1;18(7):1888-900.
doi: 10.1158/1078-0432.CCR-11-1789. Epub 2012 Feb 20.

Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response

Affiliations

Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response

Sabrina Manni et al. Clin Cancer Res. .

Abstract

Purpose: Protein kinase CK2 promotes multiple myeloma cell growth by regulating critical signaling pathways. CK2 also modulates proper HSP90-dependent client protein folding and maturation by phosphorylating its co-chaperone CDC37. Because the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) is central in myeloma pathogenesis, we tested the hypothesis that the CK2/CDC37/HSP90 axis could be involved in UPR in myeloma cells.

Experimental design: We analyzed CK2 activity upon ER stress, the effects of its inactivation on the UPR pathways and on ER stress-induced apoptosis. The consequences of CK2 plus HSP90 inhibition on myeloma cell growth in vitro and in vivo and CK2 regulation of HSP90-triggered UPR were determined.

Results: CK2 partly localized to the ER and ER stress triggered its kinase activity. CK2 inhibition reduced the levels of the ER stress sensors IRE1α and BIP/GRP78, increased phosphorylation of PERK and EIF2α, and enhanced ER stress-induced apoptosis. Simultaneous inactivation of CK2 and HSP90 resulted in a synergic anti-myeloma effect (combination index = 0.291) and in much stronger alterations of the UPR pathways as compared with the single inhibition of the two molecules. Cytotoxicity from HSP90 and CK2 targeting was present in a myeloma microenvironment model, on plasma cells from patients with myeloma and in an in vivo mouse xenograft model. Mechanistically, CK2 inhibition led to a reduction of IRE1α/HSP90/CDC37 complexes in multiple myeloma cells.

Conclusions: Our results place CK2 as a novel regulator of the ER stress/UPR cascades and HSP90 function in myeloma cells and offer the groundwork to design novel combination treatments for this disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources