Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May;52(5):998-1008.
doi: 10.1016/j.yjmcc.2012.02.002. Epub 2012 Feb 14.

Application of human stem cell-derived cardiomyocytes in safety pharmacology requires caution beyond hERG

Affiliations

Application of human stem cell-derived cardiomyocytes in safety pharmacology requires caution beyond hERG

Malin K B Jonsson et al. J Mol Cell Cardiol. 2012 May.

Abstract

Human embryonic stem cell-derived cardiomyocytes (hESC-CM) have been proposed as a new model for safety pharmacology. So far, a thorough description of their basic electrophysiology and extensive testing, and mechanistic explanations, of their overall pro-arrhythmic ability is lacking. Under standardized conditions, we have evaluated the sensitivity of hESC-CM to proarrhythmic provocations by blockade of hERG and other channels. Using voltage patch clamp, some ion current densities (pA/pF) in hESC-CM were comparable to adult CM: I(Kr) (-12.5 ± 6.9), I(Ks) (0.65 ± 0.12), I(Na,peak) (-72 ± 21), I(Na,late) (-1.10 ± 0.36), and I(Ca,L) (-4.3 ± 0.6). I(f) density was larger (-10 ± 1.1) and I(K1) not existent or very small (-2.67 ± 0.3). The low I(K1) density was corroborated by low KCNJ2 mRNA levels. Effects of pro-arrhythmic compounds on action potential (AP) parameters and provocation of early afterdepolarizations (EADs) revealed that Chromanol293B (100 μmol/l) and Bay K8644 (1 μmol/l) both significantly prolonged APD(90). ATX-II (<1 μmol/l ) and BaCl(2) (10 μmol/l ) had no effect on APD. The only compound that triggered EADs was hERG blocker Cisapride. Computer simulations and AP clamp showed that the immature AP of hESC-CM prevents proper functioning of I(Na)-channels, and result in lower peak/maximal currents of several other channels, compared to the adult situation. Lack of functional I(K1) channels and shifted I(Na) channel activation cause a rather immature electrophysiological phenotype in hESC-CM, and thereby limits the potential of this model to respond accurately to pro-arrhythmic triggers other than hERG block. Maturation of the electrical phenotype is a prerequiste for future implementation of the model in arrhythmogenic safety testing.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources