Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Feb 21:9:14.
doi: 10.1186/1743-7075-9-14.

Multiple functions of microsomal triglyceride transfer protein

Affiliations

Multiple functions of microsomal triglyceride transfer protein

M Mahmood Hussain et al. Nutr Metab (Lond). .

Abstract

Microsomal triglyceride transfer protein (MTP) was first identified as a major cellular protein capable of transferring neutral lipids between membrane vesicles. Its role as an essential chaperone for the biosynthesis of apolipoprotein B (apoB)-containing triglyceride-rich lipoproteins was established after the realization that abetalipoproteinemia patients carry mutations in the MTTP gene resulting in the loss of its lipid transfer activity. Now it is known that it also plays a role in the biosynthesis of CD1, glycolipid presenting molecules, as well as in the regulation of cholesterol ester biosynthesis. In this review, we will provide a historical perspective about the identification, purification and characterization of MTP, describe methods used to measure its lipid transfer activity, and discuss tissue expression and function. Finally, we will review the role MTP plays in the assembly of apoB-lipoprotein, the regulation of cholesterol ester synthesis, biosynthesis of CD1 proteins and propagation of hepatitis C virus. We will also provide a brief overview about the clinical potentials of MTP inhibition.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Role of MTP in cellular cholesterol ester biosynthesis. (A) ACAT, a membrane integral enzyme is shown (yellow arrows) to convert free cholesterol present in the endoplasmic reticulum (ER) leaflets into cholesterol esters that remain within the membrane bilayer. MTP is shown to transfer both free cholesterol and cholesterol esters from the ER membranes to apoB-lipoproteins in the ER lumen. It should be pointed out that MTP could transfer both free and esterified cholesterol to apoB that is still associated with membranes. The thickness of orange arrows is meant to show that MTP most likely prefers cholesteryl esters over free cholesterol for transfer. (B) In MTP deficient conditions, transfer of free and esterified cholesterol to apoB-lipoproteins is reduced. Initially this might lead to accumulation of cholesteryl esters. When a high enough concentration of cholesteryl esters is achieved then ACAT activity is inhibited due to product inhibition leading to accumulation of free cholesterol. (C) In the absence of ACAT activity, it is anticipated that cells accumulate more free cholesterol. Indeed, this is known to happen in cells that do not secrete apoB-lipoproteins, such as macrophages. However, in cells that are able to synthesize apoB-containing lipoproteins, MTP can transfer free cholesterol to lipoproteins avoiding excess free cholesterol accumulation in the ER membrane.
Figure 2
Figure 2
Role of MTP in the biosynthesis of CD1 proteins: MTP transfers endogenous lipids to newly synthesized CD1 proteins in the ER (a). CD1 proteins also associate with β2-microglobulin (β2 m) before entering the secretory pathway (b). In the absence of MTP, group 1 CD1 proteins are subjected to proteasomal degradation (c). Group 2 CD1 proteins, on the other hand, are still transported to the plasma membrane in the absence of MTP. From the plasma membrane, CD1 proteins are constitutively internalized via clathrin-mediated endocytosis (d) and reach endosomal recycling compartment. In this compartment, saposins remove endogenous lipids and load different lipid antigens onto CD1 proteins (e). CD1 molecules with foreign lipids are recycled back to the plasma membrane (f), where they present their lipid antigens to restricted population of T cells.

References

    1. Wetterau JR, Zilversmit DB. A triglyceride and cholesteryl ester transfer protein associated with liver microsomes. J Biol Chem. 1984;259:10863–10866. - PubMed
    1. Wetterau JR, Zilversmit DB. Localization of intracellular triacyglycerol and cholesteryl ester transfer activity in rat tissue. Biochim Biophys Acta. 1986;875:610–617. - PubMed
    1. Wetterau JR, Zilversmit DB. Purification and characterization of microsomal triglyceride and cholesteryl ester transfer protein from bovine liver microsomes. Chem Phys Lipids. 1985;38:205–222. doi: 10.1016/0009-3084(85)90068-4. - DOI - PubMed
    1. Wetterau JR, Combs KA, Spinner SN, Joiner BJ. Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. J Biol Chem. 1990;265:9800–9807. - PubMed
    1. Garcia ZC, Poksay KS, Bostrom K, Johnson DF, Balestra ME, Shechter I. et al.Characterization of apolipoprotein B mRNA editing from rabbit intestine. Arterioscler Thromb. 1992;12:172–179. doi: 10.1161/01.ATV.12.2.172. - DOI - PubMed

LinkOut - more resources