Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2012 Mar;122(3):798-801.
doi: 10.1172/JCI62620. Epub 2012 Feb 22.

Unraveling human natural killer cell deficiency

Affiliations
Comment

Unraveling human natural killer cell deficiency

Jordan S Orange. J Clin Invest. 2012 Mar.

Abstract

NK cells are a component of the innate immune system identified in animals as serving an essential role in antiviral immunity. Establishing their role in human health has been challenging, with the most direct insight coming from the study of NK cell-deficient individuals. However, NK cell deficiencies are rare, and more research is needed. In this issue of the JCI, two independent groups of researchers have simultaneously identified the genetic cause of a human NK cell deficiency as mutation in the MCM4 gene, encoding minichromosome maintenance complex component 4. These reports suggest a critical role for the minichromosome maintenance helicase complex in NK cells and NK cell-mediated host defense.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Human genes known to affect NK cells in the context of naturally occurring disease.
A human NK cell is represented schematically, with disease-associated genes listed in proximity to where the encoded proteins function within the cell. Genes that have an impact on other immune cells in addition to NK cells and thus cause broader immunodeficiency/hematological syndromes are shown in blue. The three genes known to cause either functional (CD16) or classical (GATA2 and now MCM4) NK cell deficiency are shown in red. CD16 mutation impacts a region of the well-defined NK cell activation receptor (shown on the cell surface) encoded by the gene (9), while GATA2 mutation affects the broadly expressed hematopoietic transcription factor (shown in the nucleus) that it encodes (10, 11). MCM4 mutations as defined by Gineau et al. (12) and Hughes et al. (13) presumably affect the function in NK cell DNA replication of the MCM2–7 complex of which MCM4 is a component. The impact and role in NK cells of the other human disease-associated mutated genes is reviewed elsewhere (2, 4, 5). In addition to having an impact on other immune cells, these affect NK cell development (IL2RG, JAK3), NK cell survival (ADA, BLM, FANCA–G), NK cell lytic function (ITGB2, ORAI1, LYST, AP3B1, MAPBPIP, RAB27A, UNC13D, STXBP2, STX11, PRF1, CTSC, WASP, MYH9), or NK cell responsiveness (TAP1, TAP2, IL12RB1, NEMO, CASP8).
Figure 2
Figure 2. Schematic of terminal human NK cell differentiation and a proposed role for MCM4.
Human NK cells arise from the HSC in the bone marrow and then progress to pro-, pre-, and immature NK cells (also referred to as stage 1, 2, and 3 NK cells, respectively). The immature NK cell transits to the peripheral lymphoid compartment secondary lymphoid tissues where CD56bright NK cells predominate. CD56bright NK cells are also referred to as stage 4 NK cells, and current evidence suggests that they develop in the secondary lymphoid tissues into CD56dim mature NK cells (stage 5). Key differences between CD56bright and CD56dim NK cells are depicted in the schematics of these two cells. Characteristics of early-stage NK cells as well as their specific transcriptional requirements are reviewed elsewhere (18). The present work suggests a role for MCM4 in the transition of CD56bright to CD56dim NK cells, as evidenced by the relative absence of CD56dim NK cells in the peripheral blood with the preservation of the CD56bright NK cell population.

Comment on

References

    1. Sun JC, Lanier LL. NK cell development, homeostasis and function: parallels with CD8 T cells. Nat Rev Immunol. 2011;11(10):645–657. doi: 10.1038/nri3044. - DOI - PMC - PubMed
    1. Orange JS. Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol. 2008;8(9):713–725. doi: 10.1038/nri2381. - DOI - PMC - PubMed
    1. Lee SH, Biron CA. Here today — not gone tomorrow: roles for activating receptors in sustaining NK cells during viral infections. Eur J Immunol. 2010;40(4):923–932. doi: 10.1002/eji.201040304. - DOI - PMC - PubMed
    1. Orange JS. Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect. 2002;4(15):1545–1558. doi: 10.1016/S1286-4579(02)00038-2. - DOI - PubMed
    1. Orange JS. Human natural killer cell deficiencies. Curr Opin Allergy Clin Immunol. 2006;6(6):399–409. doi: 10.1097/ACI.0b013e3280106b65. - DOI - PubMed

Publication types