Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Feb 16:23:103-19; discussion 119-20.
doi: 10.22203/ecm.v023a08.

Inflammatory and catabolic signalling in intervertebral discs: the roles of NF-κB and MAP kinases

Affiliations
Free article

Inflammatory and catabolic signalling in intervertebral discs: the roles of NF-κB and MAP kinases

Karin Wuertz et al. Eur Cell Mater. .
Free article

Abstract

Painful intervertebral disc disease is characterised not only by an imbalance between anabolic (i.e., matrix synthesis) and catabolic (i.e., matrix degradation) processes, but also by inflammatory mechanisms. The increased expression and synthesis of matrix metalloproteinases and inflammatory factors is mediated by specific signal transduction, in particular the nuclear factor-kappaB (NF-kB) and mitogen-activated protein kinase (MAPK)-mediated pathways. NF-kB and MAPK have been identified as the master regulators of inflammation and catabolism in several musculoskeletal disorders (e.g., osteoarthritis), and recently growing evidence supports the importance of these signalling pathways in painful disc disease. With continuing research exploiting in vitro and in vivo model systems to elucidate the roles of these pathways in disc degeneration, it may be possible in the near future to specifically target these major inflammatory / catabolic signalling pathways to treat painful degenerative disc disease. In this perspective, we aim to summarise the current state of knowledge concerning the inflammatory and catabolic molecular pathways of intervertebral disc disease (IDD), with a detailed description of NF-kB and MAP kinase-mediated signal transduction in disc cells. Furthermore, we will discuss the emerging novel molecular treatment modalities for IDD using pharmacological inhibitors targeting these pathways.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms