Osteocyte RANKL: new insights into the control of bone remodeling
- PMID: 22354849
- PMCID: PMC3449092
- DOI: 10.1002/jbmr.1547
Osteocyte RANKL: new insights into the control of bone remodeling
Abstract
The idea that osteoblasts, or their progenitors, support osteoclast formation by expressing the cytokine receptor activator of NFkB ligand (RANKL) is a widely held tenet of skeletal biology. Two recent studies provide evidence that osteocytes, and not osteoblasts or their progenitors, are the major source of RANKL driving osteoclast formation in cancellous bone. The goal of this review is to highlight the results of these new studies and discuss their implications for our understanding of bone remodeling.
Copyright © 2012 American Society for Bone and Mineral Research.
Figures
References
-
- Gowen LC, Petersen DN, Mansolf AL, Qi H, Stock JL, Tkalcevic GT, Simmons HA, Crawford DT, Chidsey-Frink KL, Ke HZ, McNeish JD, Brown TA. Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem. 2003;278:1998–2007. - PubMed
-
- Brunkow ME, Gardner JC, Van NJ, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68:577–589. - PMC - PubMed
-
- Balemans W, Ebeling M, Patel N, Van HE, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den EJ, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van HW. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST) Hum Mol Genet. 2001;10:537–543. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
