Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks
- PMID: 22355554
- PMCID: PMC3216522
- DOI: 10.1038/srep00035
Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks
Abstract
Mineralized biological materials such as bone, sea sponges or diatoms provide load-bearing and armor functions and universally feature structural hierarchies from nano to macro. Here we report a systematic investigation of the effect of hierarchical structures on toughness and defect-tolerance based on a single and mechanically inferior brittle base material, silica, using a bottom-up approach rooted in atomistic modeling. Our analysis reveals drastic changes in the material crack-propagation resistance (R-curve) solely due to the introduction of hierarchical structures that also result in a vastly increased toughness and defect-tolerance, enabling stable crack propagation over an extensive range of crack sizes. Over a range of up to four hierarchy levels, we find an exponential increase in the defect-tolerance approaching hundred micrometers without introducing additional mechanisms or materials. This presents a significant departure from the defect-tolerance of the base material, silica, which is brittle and highly sensitive even to extremely small nanometer-scale defects.
Figures






Similar articles
-
Influence of geometry on mechanical properties of bio-inspired silica-based hierarchical materials.Bioinspir Biomim. 2012 Sep;7(3):036024. doi: 10.1088/1748-3182/7/3/036024. Epub 2012 Jun 28. Bioinspir Biomim. 2012. PMID: 22740585
-
Defect-Tolerant Bioinspired Hierarchical Composites: Simulation and Experiment.ACS Biomater Sci Eng. 2015 May 11;1(5):295-304. doi: 10.1021/ab500120f. Epub 2015 Apr 14. ACS Biomater Sci Eng. 2015. PMID: 33429576
-
Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils.Nano Lett. 2010 Jul 14;10(7):2626-34. doi: 10.1021/nl101341w. Nano Lett. 2010. PMID: 20518518
-
Nanomechanical strength mechanisms of hierarchical biological materials and tissues.Comput Methods Biomech Biomed Engin. 2008 Dec;11(6):595-607. doi: 10.1080/10255840802078030. Comput Methods Biomech Biomed Engin. 2008. PMID: 18803059 Review.
-
Nature's design solutions in dental enamel: Uniting high strength and extreme damage resistance.Acta Biomater. 2020 Apr 15;107:1-24. doi: 10.1016/j.actbio.2020.02.019. Epub 2020 Feb 19. Acta Biomater. 2020. PMID: 32087326 Review.
Cited by
-
Creep failure of hierarchical materials.Sci Rep. 2024 Feb 20;14(1):4238. doi: 10.1038/s41598-024-54908-x. Sci Rep. 2024. PMID: 38378777 Free PMC article.
-
The role of organic proteins on the crack growth resistance of human enamel.Acta Biomater. 2015 Jun;19:33-45. doi: 10.1016/j.actbio.2015.03.011. Epub 2015 Mar 22. Acta Biomater. 2015. PMID: 25805107 Free PMC article.
-
Structural hierarchy confers error tolerance in biological materials.Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2875-2880. doi: 10.1073/pnas.1813801116. Epub 2019 Feb 5. Proc Natl Acad Sci U S A. 2019. PMID: 30723149 Free PMC article.
-
Fault-tolerant elastic-plastic lattice material.Philos Trans A Math Phys Eng Sci. 2020 Jan 10;378(2162):20190107. doi: 10.1098/rsta.2019.0107. Epub 2019 Nov 25. Philos Trans A Math Phys Eng Sci. 2020. PMID: 31760907 Free PMC article.
-
Inverse poroelasticity as a fundamental mechanism in biomechanics and mechanobiology.Nat Commun. 2017 Oct 17;8(1):1002. doi: 10.1038/s41467-017-00801-3. Nat Commun. 2017. PMID: 29042539 Free PMC article.
References
-
- Rho J. Y., Kuhn-Spearing L. & Zioupos P. Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics 20, 92–102 (1998). - PubMed
-
- Sarikaya M. An introduction to biomimetics: A structural viewpoint. Microscopy research and technique 27, 360–375 (1994). - PubMed
-
- Aizenberg J. et al. Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005). - PubMed
-
- Losic D., Pillar R. J., Dilger T., Mitchell J. G. & Voelcker N. H. Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms. Journal of Porous Materials 14, 61–69 (2007).
-
- Thiel B. L., Guess K. B. & Viney C. Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers 41, 703–719 (1997). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical