Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol
- PMID: 22356718
- DOI: 10.1016/j.tibtech.2012.01.005
Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol
Abstract
The lack of microbial strains capable of fermenting all sugars prevalent in plant cell wall hydrolyzates to ethanol is a major challenge. Although naturally existing or engineered microorganisms can ferment mixed sugars (glucose, xylose and galactose) in these hydrolyzates sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Therefore, numerous metabolic engineering approaches have been attempted to construct optimal microorganisms capable of co-fermenting mixed sugars simultaneously. Here, we present recent findings and breakthroughs in engineering yeast for improved ethanol production from mixed sugars. In particular, this review discusses new sugar transporters, various strategies for simultaneous co-fermentation of mixed sugars, and potential applications of co-fermentation for producing fuels and chemicals.
Copyright © 2012 Elsevier Ltd. All rights reserved.
Similar articles
-
Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis.Biotechnol Lett. 2008 Sep;30(9):1515-24. doi: 10.1007/s10529-008-9728-z. Epub 2008 Apr 23. Biotechnol Lett. 2008. PMID: 18431677 Review.
-
Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.Appl Microbiol Biotechnol. 2010 Aug;87(5):1803-11. doi: 10.1007/s00253-010-2609-0. Epub 2010 May 7. Appl Microbiol Biotechnol. 2010. PMID: 20449743
-
Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2.Appl Microbiol Biotechnol. 2010 Aug;87(5):1975-82. doi: 10.1007/s00253-010-2714-0. Epub 2010 Jun 16. Appl Microbiol Biotechnol. 2010. PMID: 20552354
-
Fermentation of biomass sugars to ethanol using native industrial yeast strains.Bioresour Technol. 2011 Feb;102(3):3246-53. doi: 10.1016/j.biortech.2010.11.034. Epub 2010 Nov 13. Bioresour Technol. 2011. PMID: 21129954
-
Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.Biotechnol Adv. 2013 Nov;31(6):851-61. doi: 10.1016/j.biotechadv.2013.03.004. Epub 2013 Mar 21. Biotechnol Adv. 2013. PMID: 23524005 Review.
Cited by
-
Continuous hydrogen production from glucose/xylose by an anaerobic sequential batch reactor to maximize the energy recovery efficiency.RSC Adv. 2018 Jun 6;8(37):20712-20718. doi: 10.1039/c8ra02991a. eCollection 2018 Jun 5. RSC Adv. 2018. PMID: 35542329 Free PMC article.
-
Functional characterization of a xylose transporter in Aspergillus nidulans.Biotechnol Biofuels. 2014 Apr 1;7(1):46. doi: 10.1186/1754-6834-7-46. Biotechnol Biofuels. 2014. PMID: 24690493 Free PMC article.
-
Enhanced glycolic acid yield through xylose and cellobiose utilization by metabolically engineered Escherichia coli.Bioprocess Biosyst Eng. 2021 Jun;44(6):1081-1091. doi: 10.1007/s00449-020-02502-6. Epub 2021 Feb 1. Bioprocess Biosyst Eng. 2021. PMID: 33527231
-
Advances in S. cerevisiae Engineering for Xylose Fermentation and Biofuel Production: Balancing Growth, Metabolism, and Defense.J Fungi (Basel). 2023 Jul 26;9(8):786. doi: 10.3390/jof9080786. J Fungi (Basel). 2023. PMID: 37623557 Free PMC article. Review.
-
Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae.Biotechnol Biofuels. 2014 Aug 27;7(1):126. doi: 10.1186/s13068-014-0126-6. eCollection 2014. Biotechnol Biofuels. 2014. PMID: 25435910 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases