How host heterogeneity governs tuberculosis reinfection?
- PMID: 22357260
- PMCID: PMC3350683
- DOI: 10.1098/rspb.2011.2712
How host heterogeneity governs tuberculosis reinfection?
Abstract
Recurrent episodes of tuberculosis (TB) can be due to relapse of latent infection or exogenous reinfection, and discrimination is crucial for control planning. Molecular genotyping of Mycobacterium tuberculosis isolates offers concrete opportunities to measure the relative contribution of reinfection in recurrent disease. Here, a mathematical model of TB transmission is fitted to data from 14 molecular epidemiology studies, enabling the estimation of relevant epidemiological parameters. Meta-analysis reveals that rates of reinfection after successful treatment are higher than rates of new TB, raising an important question about the underlying mechanism. We formulate two alternative mechanisms within our model framework: (i) infection increases susceptibility to reinfection or (ii) infection affects individuals differentially, thereby recruiting high-risk individuals to the group at risk for reinfection. The second mechanism is better supported by the fittings to the data, suggesting that reinfection rates are inflated through a population phenomenon that occurs in the presence of heterogeneity in individual risk of infection. As a result, rates of reinfection are higher when measured at the population level even though they might be lower at the individual level. Finally, differential host recruitment is modulated by transmission intensity, being less pronounced when incidence is high.
Figures



Similar articles
-
Classifying recurrent Mycobacterium tuberculosis cases in Georgia using MIRU-VNTR typing.PLoS One. 2019 Oct 18;14(10):e0223610. doi: 10.1371/journal.pone.0223610. eCollection 2019. PLoS One. 2019. PMID: 31626647 Free PMC article.
-
Modelling heterogeneity in host susceptibility to tuberculosis and its effect on public health interventions.PLoS One. 2018 Nov 14;13(11):e0206603. doi: 10.1371/journal.pone.0206603. eCollection 2018. PLoS One. 2018. PMID: 30427891 Free PMC article.
-
[Future prospects of molecular epidemiology in tuberculosis].Kekkaku. 2009 Dec;84(12):783-4. Kekkaku. 2009. PMID: 20077862 Japanese.
-
[New era in molecular epidemiology of tuberculosis in Japan].Kekkaku. 2006 Nov;81(11):693-707. Kekkaku. 2006. PMID: 17154049 Review. Japanese.
-
Molecular epidemiology of tuberculosis: achievements and challenges to current knowledge.Bull World Health Organ. 2002;80(6):477-82. Bull World Health Organ. 2002. PMID: 12132006 Free PMC article. Review.
Cited by
-
The impact of active case finding on transmission dynamics of tuberculosis: A modelling study.PLoS One. 2021 Nov 19;16(11):e0257242. doi: 10.1371/journal.pone.0257242. eCollection 2021. PLoS One. 2021. PMID: 34797864 Free PMC article.
-
Heterogeneous susceptibility to rotavirus infection and gastroenteritis in two birth cohort studies: Parameter estimation and epidemiological implications.PLoS Comput Biol. 2019 Jul 26;15(7):e1007014. doi: 10.1371/journal.pcbi.1007014. eCollection 2019 Jul. PLoS Comput Biol. 2019. PMID: 31348775 Free PMC article.
-
Clinical trials: The mathematics of falling vaccine efficacy with rising disease incidence.Vaccine. 2016 Jun 8;34(27):3007-3009. doi: 10.1016/j.vaccine.2016.04.065. Epub 2016 May 10. Vaccine. 2016. PMID: 27177948 Free PMC article. No abstract available.
-
On the correlation between variance in individual susceptibilities and infection prevalence in populations.J Math Biol. 2015 Dec;71(6-7):1643-61. doi: 10.1007/s00285-015-0870-7. Epub 2015 Mar 22. J Math Biol. 2015. PMID: 25796496
-
The source of individual heterogeneity shapes infectious disease outbreaks.Proc Biol Sci. 2022 May 11;289(1974):20220232. doi: 10.1098/rspb.2022.0232. Epub 2022 May 4. Proc Biol Sci. 2022. PMID: 35506229 Free PMC article.
References
-
- Panjabi R., Comstock G. W., Golub J. E. 2007. Recurrent tuberculosis and its risk factors: adequately treated patients are still at high risk. Int. J. Tuberc. Lung Dis. 11, 828–837 - PubMed
-
- McNabb S. J., Braden C. R., Navin T. R. 2002. DNA fingerprinting of Mycobacterium tuberculosis: lessons learned and implications for the future. Emerg. Infect. Dis. 8, 1314–131910.3201/eid0811.020402 (doi:10.3201/eid0811.020402) - DOI - DOI - PMC - PubMed
-
- Wang J.-Y., Lee L.-N., Lai H.-C., Hsu H.-L., Liaw Y.-S., Hsueh P.-R., Yang P.-C. 2007. Prediction of the tuberculosis reinfection proportion from the local incidence. J. Infect. Dis. 196, 281–28810.1086/518898 (doi:10.1086/518898) - DOI - DOI - PubMed
-
- Verver S., Warren R. M., Beyers N., Richardson M., van der Spuy G. D., Borgdorff M. W., Enarson D. A., Behr M. A., van Helden P. D. 2005. Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am. J. Respir. Crit. Care Med. 171, 1430–143510.1164/rccm.200409-1200OC (doi:10.1164/rccm.200409-1200OC) - DOI - DOI - PubMed
-
- Yew W. W., Leung C. C. 2005. Are some people not safer after successful treatment of tuberculosis? Am. J. Respir. Crit. Care Med. 171, 1324–132510.1164/rccm.2502005 (doi:10.1164/rccm.2502005) - DOI - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Research Materials