Male germline control of transposable elements
- PMID: 22357546
- PMCID: PMC3364930
- DOI: 10.1095/biolreprod.111.095463
Male germline control of transposable elements
Abstract
Repetitive sequences, especially transposon-derived interspersed repetitive elements, account for a large fraction of the genome in most eukaryotes. Despite the repetitive nature, these transposable elements display quantitative and qualitative differences even among species of the same lineage. Although transposable elements contribute greatly as a driving force to the biological diversity during evolution, they can induce embryonic lethality and genetic disorders as a result of insertional mutagenesis and genomic rearrangement. Temporary relaxation of the epigenetic control of retrotransposons during early germline development opens a risky window that can allow retrotransposons to escape from host constraints and to propagate abundantly in the host genome. Because germline mutations caused by retrotransposon activation are heritable and thus can be deleterious to the offspring, an adaptive strategy has evolved in host cells, especially in the germline. In this review, we will attempt to summarize general defense mechanisms deployed by the eukaryotic genome, with an emphasis on pathways utilized by the male germline to confer retrotransposon silencing.
Figures





Similar articles
-
Role of transposon-derived small RNAs in the interplay between genomes and parasitic DNA in rice.PLoS Genet. 2012 Sep;8(9):e1002953. doi: 10.1371/journal.pgen.1002953. Epub 2012 Sep 27. PLoS Genet. 2012. PMID: 23028360 Free PMC article.
-
Transposable elements in the mammalian germline: a comfortable niche or a deadly trap?Heredity (Edinb). 2010 Jul;105(1):92-104. doi: 10.1038/hdy.2010.53. Epub 2010 May 5. Heredity (Edinb). 2010. PMID: 20442734 Review.
-
Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse.Hum Mol Genet. 2007 Oct 1;16(19):2272-80. doi: 10.1093/hmg/ddm179. Epub 2007 Jul 6. Hum Mol Genet. 2007. PMID: 17616512
-
A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress.Elife. 2017 Mar 15;6:e21666. doi: 10.7554/eLife.21666. Elife. 2017. PMID: 28294943 Free PMC article.
-
Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline.Semin Cell Dev Biol. 2016 Nov;59:118-125. doi: 10.1016/j.semcdb.2016.03.001. Epub 2016 Mar 5. Semin Cell Dev Biol. 2016. PMID: 26957474 Free PMC article. Review.
Cited by
-
Meiosis arrest female 1 (MARF1) has nuage-like function in mammalian oocytes.Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18653-60. doi: 10.1073/pnas.1216904109. Epub 2012 Oct 22. Proc Natl Acad Sci U S A. 2012. PMID: 23090997 Free PMC article.
-
Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish × common carp cross.Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1327-32. doi: 10.1073/pnas.1512955113. Epub 2016 Jan 14. Proc Natl Acad Sci U S A. 2016. PMID: 26768847 Free PMC article.
-
A novel reporter mouse to monitor in vivo retrotransposition in the germline.Biol Reprod. 2017 Sep 1;97(3):335-336. doi: 10.1093/biolre/iox111. Biol Reprod. 2017. PMID: 29024952 Free PMC article. No abstract available.
-
Loss of Glis3 causes dysregulation of retrotransposon silencing and germ cell demise in fetal mouse testis.Sci Rep. 2018 Jun 25;8(1):9662. doi: 10.1038/s41598-018-27843-x. Sci Rep. 2018. PMID: 29941866 Free PMC article.
-
Identification of male gametogenesis expressed genes from the scallop Nodipecten subnodosus by suppressive subtraction hybridization and pyrosequencing.PLoS One. 2013 Sep 16;8(9):e73176. doi: 10.1371/journal.pone.0073176. eCollection 2013. PLoS One. 2013. PMID: 24066034 Free PMC article.
References
-
- Biemont C, Vieira C. Genetics: junk DNA as an evolutionary force. Nature 2006; 443: 521 524 - PubMed
-
- Kidwell MG, Lisch DR. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 2001; 55: 1 24 - PubMed
-
- Gregory TR, Hebert PD. The modulation of DNA content: proximate causes and ultimate consequences. Genome Res 1999; 9: 317 324 - PubMed
-
- Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420: 520 562 - PubMed
-
- Kazazian HH., Jr Mobile elements: drivers of genome evolution. Science 2004; 303: 1626 1632 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources