Automatic liquid handling for life science: a critical review of the current state of the art
- PMID: 22357568
- DOI: 10.1177/2211068211435302
Automatic liquid handling for life science: a critical review of the current state of the art
Abstract
Liquid handling plays a pivotal role in life science laboratories. In experiments such as gene sequencing, protein crystallization, antibody testing, and drug screening, liquid biosamples frequently must be transferred between containers of varying sizes and/or dispensed onto substrates of varying types. The sample volumes are usually small, at the micro- or nanoliter level, and the number of transferred samples can be huge when investigating large-scope combinatorial conditions. Under these conditions, liquid handling by hand is tedious, time-consuming, and impractical. Consequently, there is a strong demand for automated liquid-handling methods such as sensor-integrated robotic systems. In this article, we survey the current state of the art in automatic liquid handling, including technologies developed by both industry and research institutions. We focus on methods for dealing with small volumes at high throughput and point out challenges for future advancements.
Similar articles
-
Robotic liquid handling and automation in epigenetics.J Lab Autom. 2012 Oct;17(5):327-9. doi: 10.1177/2211068212457160. Epub 2012 Aug 29. J Lab Autom. 2012. PMID: 22933618 Review.
-
Adding precise nanoliter volume capabilities to liquid-handling automation for compound screening experimentation.J Lab Autom. 2011 Jun;16(3):221-8. doi: 10.1016/j.jala.2010.08.006. Epub 2011 Apr 2. J Lab Autom. 2011. PMID: 21609705
-
Robotic nanolitre protein crystallisation at the MRC Laboratory of Molecular Biology.Prog Biophys Mol Biol. 2005 Jul;88(3):311-27. doi: 10.1016/j.pbiomolbio.2004.07.009. Epub 2004 Sep 30. Prog Biophys Mol Biol. 2005. PMID: 15652247 Review.
-
Moving Liquids with Sound: The Physics of Acoustic Droplet Ejection for Robust Laboratory Automation in Life Sciences.J Lab Autom. 2016 Feb;21(1):4-18. doi: 10.1177/2211068215615096. Epub 2015 Nov 4. J Lab Autom. 2016. PMID: 26538573
-
Implementation and development of an automated, ultra-high-capacity, acoustic, flexible dispensing platform for assay-ready plate delivery.J Lab Autom. 2012 Oct;17(5):348-58. doi: 10.1177/2211068212457159. Epub 2012 Aug 24. J Lab Autom. 2012. PMID: 22922543
Cited by
-
Toward Zero Variance in Proteomics Sample Preparation: Positive-Pressure FASP in 96-Well Format (PF96) Enables Highly Reproducible, Time- and Cost-Efficient Analysis of Sample Cohorts.J Proteome Res. 2022 Apr 1;21(4):1181-1188. doi: 10.1021/acs.jproteome.1c00706. Epub 2022 Mar 22. J Proteome Res. 2022. PMID: 35316605 Free PMC article.
-
Dotette: Programmable, high-precision, plug-and-play droplet pipetting.Biomicrofluidics. 2018 May 21;12(3):034107. doi: 10.1063/1.5030629. eCollection 2018 May. Biomicrofluidics. 2018. PMID: 29861810 Free PMC article.
-
A feedback-driven brain organoid platform enables automated maintenance and high-resolution neural activity monitoring.bioRxiv [Preprint]. 2024 Dec 7:2024.03.15.585237. doi: 10.1101/2024.03.15.585237. bioRxiv. 2024. PMID: 38559212 Free PMC article. Preprint.
-
Quantification of Viruses in Wastewater on a Centrifugal Microfluidic Disc.Environ Sci Technol. 2025 Feb 18;59(6):3088-3097. doi: 10.1021/acs.est.4c13718. Epub 2025 Feb 2. Environ Sci Technol. 2025. PMID: 39893671 Free PMC article.
-
Fabrication approaches for high-throughput and biomimetic disease modeling.Acta Biomater. 2021 Sep 15;132:52-82. doi: 10.1016/j.actbio.2021.03.006. Epub 2021 Mar 11. Acta Biomater. 2021. PMID: 33716174 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources