Cellular functions of the DUBs
- PMID: 22357969
- DOI: 10.1242/jcs.090985
Cellular functions of the DUBs
Abstract
Ubiquitylation is a reversible post-translational modification that has emerged as a key regulator of most complex cellular processes. It may rival phosphorylation in scope and exceed it in complexity. The dynamic nature of ubiquitylation events is important for governing protein stability, maintaining ubiquitin homeostasis and controlling ubiquitin-dependent signalling pathways. The human genome encodes ~80 active deubiquitylating enzymes (DUBs, also referred to as deubiquitinases), which exhibit distinct specificity profiles towards the various ubiquitin chain topologies. As a result of their ability to reverse ubiquitylation, these enzymes control a broad range of key cellular processes. In this Commentary we discuss the cellular functions of DUBs, such as their role in governing membrane traffic and protein quality control. We highlight two key signalling pathways--the Wnt and transforming growth factor β (TGF-β) pathways, for which dynamic ubiquitylation has emerged as a key regulator. We also discuss the roles of DUBs in the nucleus, where they govern transcriptional activity and DNA repair pathways.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
