Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May;33(14):3682-92.
doi: 10.1016/j.biomaterials.2012.02.007. Epub 2012 Feb 22.

Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors

Affiliations

Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors

Chin-Yu Lin et al. Biomaterials. 2012 May.

Abstract

Repair of large calvarial bony defects remains clinically challenging because successful spontaneous calvarial re-ossification rarely occurs. Although bone marrow-derived mesenchymal stem cells (BMSCs) genetically engineered with baculovirus (BV) for transient expression of osteogenic/angiogenic factors hold promise for bone engineering, we hypothesized that calvarial bone healing necessitates prolonged growth factor expression. Therefore, we employed a hybrid BV vector system whereby one BV expressed FLP while the other harbored the BMP2 (or VEGF) cassette flanked by Frt sequences. Transduction of rabbit BMSCs with the FLP/Frt-based BV vector led to FLP-mediated episome formation, which not only extended the BMP2/VEGF expression beyond 28 days but augmented the BMSCs osteogenesis. After allotransplantation into rabbits, X-ray, PET/CT, μCT and histological analyses demonstrated that the sustained BMP2/VEGF expression remarkably ameliorated the angiogenesis and regeneration of critical-size (8 mm) calvarial defects, when compared with the group implanted with BMSCs transiently expressing BMP2/VEGF. The prolonged expression by BMSCs accelerated the bone remodeling and regenerated the bone through the natural intramembranous pathway, filling ≈83% of the area and ≈63% of the volume in 12 weeks. These data implicated the potential of the hybrid BV vector to engineer BMSCs for sustained BMP2/VEGF expression and the repair of critical-size calvarial defects.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources