Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;18(5):520-4.
doi: 10.1016/j.parkreldis.2012.01.021. Epub 2012 Feb 22.

PARK2 variability in Polish Parkinson's disease patients--interaction with mitochondrial haplogroups

Affiliations

PARK2 variability in Polish Parkinson's disease patients--interaction with mitochondrial haplogroups

Katarzyna Gaweda-Walerych et al. Parkinsonism Relat Disord. 2012 Jun.

Abstract

Aims and objectives: A new pathomechanism of Parkinson's disease (PD) involving regulation of mitochondrial functions was recently proposed. Parkin complexed with mitochondrial transcription factor A (TFAM) binds mtDNA and promotes mitochondrial biogenesis, which is abolished by PARK2 gene mutations. We have previously shown that mitochondrial haplogroups/clusters and TFAM common variation influenced PD risk. We investigate the role of PARK2 polymorphisms on PD risk and their interactions with mitochondrial haplogroups/clusters as well as with TFAM variability.

Methods: 104 early-onset PD patients (EOPD, age at onset ≤ 50 years) were screened for PARK2 coding sequence changes including gene dosage alterations. Three selected PARK2 polymorphisms (S167N, V380L, D394N) were genotyped in 326 PD patients and 315 controls using TaqMan allelic discrimination assay.

Results: PARK2 screen revealed two heterozygous changes in two EOPD patients: exon 2 deletion and one novel synonymous variation (c.999C > A, P333P). In association study no differences in genotype/allele frequencies of S167N, V380L, D394N were found between analyzed groups. Stratification by mitochondrial clusters revealed higher frequency of V380L G/G genotype and allele G in PD patients, within HV cluster (p = 0.040; p = 0.022, respectively). Moreover, interaction between genotypes G/G V380L of PARK2 and G/G rs2306604 of TFAM, within HV cluster was significant (OR 2.05; CI 1.04-4.04; p = 0.038).

Conclusions: Our results indicate that co-occurrence of G/G V380L PARK2 and G/G rs2306604 TFAM on the prooxidative HV cluster background can contribute to PD risk. We confirm low PARK2 mutation frequency in Polish EOPD patients.

PubMed Disclaimer

References

    1. The Parkinson Disease Mutation Database. http://www.molgen.ua.ac.be/PDmutDB.
    1. Mata IF, Lockhart PJ, Farrer MJ. Parkin genetics: one model for Parkinson’s disease. Hum Mol Genet. 2004;13(Spec No 1):R127–33. - PubMed
    1. Klein C, Lohmann-Hedrich K, Rogaeva E, Schlossmacher MG, Lang AE. Deciphering the role of heterozygous mutations in genes associated with parkinsonism. Lancet Neurol. 2007;6:652–62. - PubMed
    1. Khan NL, Scherfler C, Graham E, Bhatia KP, Quinn N, Lees AJ, et al. Dopaminergic dysfunction in unrelated, asymptomatic carriers of a single parkin mutation. Neurology. 2005;64:134–6. - PubMed
    1. Dawson TM, Dawson VL. The role of parkin in familial and sporadic Parkinson’s disease. Mov Disord. 25(Suppl 1):S32–9. - PMC - PubMed

Publication types

MeSH terms