Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;1822(6):1030-7.
doi: 10.1016/j.bbadis.2012.02.011. Epub 2012 Feb 18.

Focal adhesion kinase negatively regulates neuronal insulin resistance

Affiliations
Free article

Focal adhesion kinase negatively regulates neuronal insulin resistance

Amit Gupta et al. Biochim Biophys Acta. 2012 Jun.
Free article

Abstract

Focal adhesion kinase (FAK), a non-receptor protein kinase, is known to be a phosphatidyl inositol 3-kinase (PI3K) pathway activator and thus widely implicated in regulation of cell survival and cancer. In recent years FAK has also been strongly implicated as a crucial regulator of insulin resistance in peripheral tissues like skeletal muscle and liver, where decrease in its expression/activity has been shown to lead to insulin resistance. However, in the present study we report an altogether different role of FAK in regulation of insulin/PI3K signaling in neurons, the post-mitotic cells. An aberrant increase in FAK tyrosine phosphorylation was observed in insulin resistant Neuro-2a (N2A) cells. Downregulation of FAK expression utilizing RNAi mediated gene silencing in insulin resistant N2A cells completely ameliorated the impaired insulin/PI3K signaling and glucose uptake. FAK silencing in primary cortical neurons also showed marked enhancement in glucose uptake. The results thus suggest that in neurons FAK acts as a negative regulator of insulin/PI3K signaling. Interestingly, the available literature also demonstrates cell-type specific functions of FAK in neurons. FAK that is well known for its cell survival effects has been shown to be involved in neurodegeneration. Along with these previous reports, present findings highlight a novel and critical role of FAK in neurons. Moreover, as this implicates differential regulation of insulin/PI3K pathway by FAK in peripheral tissues and neuronal cells, it strongly suggests precaution while considering FAK modulators as possible therapeutics.

PubMed Disclaimer

Publication types

LinkOut - more resources