Glucose-dependent insulinotropic peptide impairs insulin signaling via inducing adipocyte inflammation in glucose-dependent insulinotropic peptide receptor-overexpressing adipocytes
- PMID: 22366643
- DOI: 10.1096/fj.11-196782
Glucose-dependent insulinotropic peptide impairs insulin signaling via inducing adipocyte inflammation in glucose-dependent insulinotropic peptide receptor-overexpressing adipocytes
Abstract
Glucose-dependent insulinotropic peptide (GIP) exerts multiple biological effects via the G-protein-coupled receptor GIPR, including glucose-stimulated insulin production and secretion, cell proliferation, and antiapoptosis in pancreatic β-cells. In an obese state, the circulating level of GIP is elevated. GIPR-knockout mice are resistant to high-fat-diet-induced obesity. The rising evidence suggests a potential role of GIP in adipocyte biology and lipid metabolism. In our study, we overexpressed GIPR in 3T3-L1 CAR adipocytes and demonstrated that GIP impaired the physiological functions of adipocytes as a consequence of increased production of inflammatory cytokines and chemokines and phosphorylation of IkB kinase (IKK)-β through activation of the cAMP-PKA pathway. Activation of Jun N-terminal kinase (JNK) pathway was also observed during GIP-induced inflammatory responses in adipocytes. The inhibition of JNK blocked GIP-stimulated secretion of inflammatory cytokines and chemokines, as well as phosphorylation of IKKβ. In addition, GIP-induced inflammatory response increased basal glucose uptake but inhibited insulin-stimulated glucose uptake. Moreover, GIP-induced adipocyte inflammation impaired insulin signaling in adipocytes as demonstrated by a reduction of AKT phosphorylation. Our results suggest that GIP might be one of the stimuli attributable to obesity-induced insulin resistance via the induction of adipocyte inflammation.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
