Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May;52(5):1191-202.
doi: 10.1016/j.yjmcc.2012.02.003. Epub 2012 Feb 16.

ATP acts as a survival signal and prevents the mineralization of aortic valve

Affiliations

ATP acts as a survival signal and prevents the mineralization of aortic valve

Nancy Côté et al. J Mol Cell Cardiol. 2012 May.

Abstract

Calcific aortic valve disease (CAVD) is a disorder related to progressive mineralization of valvular tissue that is a leading cause of heart disease. Thus far, there is no medical treatment to prevent the mineralization of aortic valves. It is generally thought that pathologic mineralization is linked to apoptosis of vascular cells. However, the role of apoptosis during mineralization as well as the survival signals for valvular interstitial cells (VICs), the main cellular component of aortic valves, remains to be identified. Here, through several lines of evidence, we show that bioavailability of extracellular ATP is a signal which determines survival or apoptosis of VICs and, in doing so, plays a major role in the development of CAVD. Specifically, in CAVD and in VIC cultures undergoing mineralization, we found a high level of the ectonucleotidase ENPP1. In addition, a genetic polymorphism in the intron 9 of the ENPP1 gene was associated with CAVD in a case-control cohort as well as with mRNA expression levels of ENPP1 in aortic valves. A high level of ENPP1 in CAVD promoted apoptosis-mediated mineralization of VICs by depleting the extracellular pool of ATP. We then documented that release of ATP by VICs promoted cell survival via the P2Y(2) receptor and the PI3K/Akt signaling pathway. Hence, our results show that level of ENPP1 modulates extracellular concentration of ATP, which is an important survival signal for VICs. These findings may help to develop novel pharmacological treatment for CAVD.

PubMed Disclaimer

Publication types

MeSH terms

Substances