Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012:4.
doi: 10.3402/jom.v4i0.10855. Epub 2012 Feb 22.

Virulence factors and antibiotic susceptibility in enterococci isolated from oral mucosal and deep infections

Affiliations

Virulence factors and antibiotic susceptibility in enterococci isolated from oral mucosal and deep infections

Gunnar Dahlén et al. J Oral Microbiol. 2012.

Abstract

Objective: This study evaluates the presence of virulence factors and antibiotic susceptibility among enterococcal isolates from oral mucosal and deep infections.

Methods: Forty-three enterococcal strains from oral mucosal lesions and 18 from deep infections were isolated from 830 samples that were sent during 2 years to Oral Microbiology, University of Gothenburg, for analysis. The 61 strains were identified by 16S rDNA, and characterized by the presence of the virulence genes efa A (endocarditis gene), gel E (gelatinase gene), ace (collagen binding antigen gene), asa (aggregation substance gene), cyl A (cytolysin activator gene) and esp (surface adhesin gene), tested for the production of bacteriocins and presence of plasmids. MIC determination was performed using the E-test method against the most commonly used antibiotics in dentistry, for example, penicillin V, amoxicillin and clindamycin. Vancomycin was included in order to detect vancomycin-resistant enterococci (VRE) strains.

Results: Sixty strains were identified as Enterococcus faecalis and one as Enterococcus faecium. All the virulence genes were detected in more than 93.3% (efa A and esp) of the E. faecalis strains, while the presence of phenotypic characteristics was much lower (gelatinase 10% and hemolysin 16.7%). Forty-six strains produced bacteriocins and one to six plasmids were detected in half of the isolates.

Conclusions: Enterococcal strains from oral infections had a high virulence capacity, showed bacteriocin production and had numerous plasmids. They were generally susceptible to ampicillins but were resistant to clindamycin, commonly used in dentistry, and no VRE-strain was found.

Keywords: Enterococci; antibiotic susceptibility; opportunistic infections; oral mucosal infections; virulence.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Murray BE. The life and times of the enterococcus. Clin Microbiol Rev. 1990;3:46–65. - PMC - PubMed
    1. Martin B, Corominas L, Garriga M, Aymerich T. Identification and tracing of Enterococcus spp. by RAPD-PCR in traditional fermented sausages and meat environment. J Appl Microbiol. 2008;106:66–77. - PubMed
    1. Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol. 2000;21:510–5. - PubMed
    1. Sedgley CM, Lennan SL, Clewell DB. Prevalence, phenotype and genotype of oral enterococci. Oral Microbiol Immunol. 2004;19:95–101. - PubMed
    1. Molander A, Reit C, Dahlén G, Kvist T. Microbiological status of root-filled teeth with apical periodontitis. Int Endod J. 1998;31:1–7. - PubMed

LinkOut - more resources