Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Apr;25(4):770-87.
doi: 10.1111/j.1420-9101.2012.02472.x. Epub 2012 Feb 28.

The stationary distribution of a continuously varying strategy in a class-structured population under mutation-selection-drift balance

Affiliations
Free article

The stationary distribution of a continuously varying strategy in a class-structured population under mutation-selection-drift balance

Laurent Lehmann. J Evol Biol. 2012 Apr.
Free article

Abstract

Many traits and/or strategies expressed by organisms are quantitative phenotypes. Because populations are of finite size and genomes are subject to mutations, these continuously varying phenotypes are under the joint pressure of mutation, natural selection and random genetic drift. This article derives the stationary distribution for such a phenotype under a mutation-selection-drift balance in a class-structured population allowing for demographically varying class sizes and/or changing environmental conditions. The salient feature of the stationary distribution is that it can be entirely characterized in terms of the average size of the gene pool and Hamilton's inclusive fitness effect. The exploration of the phenotypic space varies exponentially with the cumulative inclusive fitness effect over state space, which determines an adaptive landscape. The peaks of the landscapes are those phenotypes that are candidate evolutionary stable strategies and can be determined by standard phenotypic selection gradient methods (e.g. evolutionary game theory, kin selection theory, adaptive dynamics). The curvature of the stationary distribution provides a measure of the stability by convergence of candidate evolutionary stable strategies, and it is evaluated explicitly for two biological scenarios: first, a coordination game, which illustrates that, for a multipeaked adaptive landscape, stochastically stable strategies can be singled out by letting the size of the gene pool grow large; second, a sex-allocation game for diploids and haplo-diploids, which suggests that the equilibrium sex ratio follows a Beta distribution with parameters depending on the features of the genetic system.

PubMed Disclaimer

Similar articles

Cited by