Oxidation of highly unstable <4 nm diameter gold nanoparticles 850 mV negative of the bulk oxidation potential
- PMID: 22372940
- DOI: 10.1021/ja2108933
Oxidation of highly unstable <4 nm diameter gold nanoparticles 850 mV negative of the bulk oxidation potential
Abstract
Here we describe the oxidation of <4 nm diameter Au nanoparticles (NPs) attached to indium tin oxide-coated glass electrodes in Br(-) and Cl(-) solution. Borohydride reduction of AuCl(4)(-) in the presence of hexanethiol or trisodium citrate (15 min) led to Au NPs <4 nm in diameter. After electrochemical and ozone removal of the hexanthiolate ligands from the thiol-coated Au NPs, Au oxidation peaks appeared in the range 0-400 mV vs Ag/AgCl (1 M KCl), which is 850-450 mV negative of the bulk Au oxidation peak near 850 mV. The oxidation potential of citrate-coated Au NPs is in the 300-500 mV range and those of 4 and 12 nm diameter Au NPs in the 660-780 mV range. The large negative shift in potential agrees with theory for NPs in the 1-2 nm diameter range. The oxidation potential of Au in Cl(-) solution is positive of that in Br(-) solution, but the difference decreases dramatically as the NP size decreases, showing less dependence on the halide for smaller NPs.
Similar articles
-
Electrochemical size discrimination of gold nanoparticles attached to glass/indium-tin-oxide electrodes by oxidation in bromide-containing electrolyte.Anal Chem. 2010 Jul 1;82(13):5844-50. doi: 10.1021/ac101021q. Anal Chem. 2010. PMID: 20527732
-
Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles.Langmuir. 2014 Nov 4;30(43):13075-84. doi: 10.1021/la5029614. Epub 2014 Oct 21. Langmuir. 2014. PMID: 25260111
-
Size-dependent electrochemical oxidation of silver nanoparticles.J Am Chem Soc. 2010 Jan 13;132(1):70-2. doi: 10.1021/ja908780g. J Am Chem Soc. 2010. PMID: 20000318
-
Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.Biosens Bioelectron. 2007 Apr 15;22(9-10):1841-52. doi: 10.1016/j.bios.2006.09.018. Epub 2006 Oct 30. Biosens Bioelectron. 2007. PMID: 17071070 Review.
-
Biomolecule-nanoparticle hybrid systems for bioelectronic applications.Bioelectrochemistry. 2007 Jan;70(1):2-11. doi: 10.1016/j.bioelechem.2006.03.013. Epub 2006 Jun 5. Bioelectrochemistry. 2007. PMID: 16750941 Review.
Cited by
-
Optimization of Tumor Targeting Gold Nanoparticles for Glioblastoma Applications.Nanomaterials (Basel). 2022 Nov 2;12(21):3869. doi: 10.3390/nano12213869. Nanomaterials (Basel). 2022. PMID: 36364644 Free PMC article.
-
Dual-Role Peptide with Capping and Cleavage Site Motifs in Nanoparticle-Based One-Pot Colorimetric and Electrochemical Protease Assay.ACS Omega. 2023 Jun 9;8(25):22556-22566. doi: 10.1021/acsomega.3c00771. eCollection 2023 Jun 27. ACS Omega. 2023. PMID: 37396282 Free PMC article.
-
Charging and discharging at the nanoscale: Fermi level equilibration of metallic nanoparticles.Chem Sci. 2015 May 1;6(5):2705-2720. doi: 10.1039/c5sc00461f. Epub 2015 Mar 23. Chem Sci. 2015. PMID: 28706663 Free PMC article.
-
Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment.J Nanobiotechnology. 2015 Dec 22;13:93. doi: 10.1186/s12951-015-0150-0. J Nanobiotechnology. 2015. PMID: 26694868 Free PMC article.
-
The Impact of PEGylation on Cellular Uptake and In Vivo Biodistribution of Gold Nanoparticle MRI Contrast Agents.Bioengineering (Basel). 2022 Dec 4;9(12):766. doi: 10.3390/bioengineering9120766. Bioengineering (Basel). 2022. PMID: 36550972 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous